|
|
|
|
|
import sys |
|
import time |
|
import math |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.modules.loss import _WeightedLoss |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
map_loc = None if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
class MaskedCrossEntropyCriterion(_WeightedLoss): |
|
|
|
def __init__(self, ignore_index=[-100], reduce=None): |
|
super(MaskedCrossEntropyCriterion, self).__init__() |
|
self.padding_idx = ignore_index |
|
self.reduce = reduce |
|
|
|
def forward(self, outputs, targets): |
|
lprobs = nn.functional.log_softmax(outputs, dim=-1) |
|
lprobs = lprobs.view(-1, lprobs.size(-1)) |
|
|
|
for idx in self.padding_idx: |
|
|
|
targets[targets == idx] = 0 |
|
|
|
nll_loss = -lprobs.gather(dim=-1, index=targets.unsqueeze(1)) |
|
if self.reduce: |
|
nll_loss = nll_loss.sum() |
|
|
|
return nll_loss.squeeze() |
|
|
|
|
|
def softIoU(out, target, e=1e-6, sum_axis=1): |
|
|
|
num = (out*target).sum(sum_axis, True) |
|
den = (out+target-out*target).sum(sum_axis, True) + e |
|
iou = num / den |
|
|
|
return iou |
|
|
|
|
|
def update_error_types(error_types, y_pred, y_true): |
|
|
|
error_types['tp_i'] += (y_pred * y_true).sum(0).cpu().data.numpy() |
|
error_types['fp_i'] += (y_pred * (1-y_true)).sum(0).cpu().data.numpy() |
|
error_types['fn_i'] += ((1-y_pred) * y_true).sum(0).cpu().data.numpy() |
|
error_types['tn_i'] += ((1-y_pred) * (1-y_true)).sum(0).cpu().data.numpy() |
|
|
|
error_types['tp_all'] += (y_pred * y_true).sum().item() |
|
error_types['fp_all'] += (y_pred * (1-y_true)).sum().item() |
|
error_types['fn_all'] += ((1-y_pred) * y_true).sum().item() |
|
|
|
|
|
def compute_metrics(ret_metrics, error_types, metric_names, eps=1e-10, weights=None): |
|
|
|
if 'accuracy' in metric_names: |
|
ret_metrics['accuracy'].append(np.mean((error_types['tp_i'] + error_types['tn_i']) / (error_types['tp_i'] + error_types['fp_i'] + error_types['fn_i'] + error_types['tn_i']))) |
|
if 'jaccard' in metric_names: |
|
ret_metrics['jaccard'].append(error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all'] + eps)) |
|
if 'dice' in metric_names: |
|
ret_metrics['dice'].append(2*error_types['tp_all'] / (2*(error_types['tp_all'] + error_types['fp_all'] + error_types['fn_all']) + eps)) |
|
if 'f1' in metric_names: |
|
pre = error_types['tp_i'] / (error_types['tp_i'] + error_types['fp_i'] + eps) |
|
rec = error_types['tp_i'] / (error_types['tp_i'] + error_types['fn_i'] + eps) |
|
f1_perclass = 2*(pre * rec) / (pre + rec + eps) |
|
if 'f1_ingredients' not in ret_metrics.keys(): |
|
ret_metrics['f1_ingredients'] = [np.average(f1_perclass, weights=weights)] |
|
else: |
|
ret_metrics['f1_ingredients'].append(np.average(f1_perclass, weights=weights)) |
|
|
|
pre = error_types['tp_all'] / (error_types['tp_all'] + error_types['fp_all'] + eps) |
|
rec = error_types['tp_all'] / (error_types['tp_all'] + error_types['fn_all'] + eps) |
|
f1 = 2*(pre * rec) / (pre + rec + eps) |
|
ret_metrics['f1'].append(f1) |
|
|