from fastapi import FastAPI, Form from fastapi.responses import HTMLResponse from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import torch app = FastAPI() MODEL_ID = "ibm-granite/granite-3.3-2b-instruct" # Load tokenzier and model tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) model = AutoModelForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.float16 if torch.cuda.is_available() else "auto", device_map="auto" ) # Use pipeline for easier text generation pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) @app.get("/", response_class=HTMLResponse) def index(): return """
{summary}Back"