Summirizer_agent Update
Browse files
main.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
from fastapi import FastAPI, Form
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
8 |
-
# Load Granite 2B model
|
9 |
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
|
|
|
|
10 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
11 |
model = AutoModelForCausalLM.from_pretrained(
|
12 |
MODEL_ID,
|
@@ -14,6 +15,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
14 |
device_map="auto"
|
15 |
)
|
16 |
|
|
|
|
|
|
|
17 |
@app.get("/", response_class=HTMLResponse)
|
18 |
def index():
|
19 |
return """
|
@@ -31,15 +35,21 @@ def index():
|
|
31 |
|
32 |
@app.post("/summarize", response_class=HTMLResponse)
|
33 |
def summarize(text: str = Form(...)):
|
34 |
-
prompt =
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
38 |
max_new_tokens=150,
|
39 |
-
do_sample=
|
40 |
-
temperature=0.7
|
|
|
|
|
|
|
41 |
)
|
42 |
-
|
43 |
-
#
|
44 |
-
summary =
|
45 |
-
return f"<h2>Summary</h2><pre>{summary}</pre><a href='/'>Back</a>"
|
|
|
1 |
from fastapi import FastAPI, Form
|
2 |
from fastapi.responses import HTMLResponse
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
4 |
import torch
|
5 |
|
6 |
app = FastAPI()
|
7 |
|
|
|
8 |
MODEL_ID = "ibm-granite/granite-3.3-2b-instruct"
|
9 |
+
|
10 |
+
# Load tokenzier and model
|
11 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
12 |
model = AutoModelForCausalLM.from_pretrained(
|
13 |
MODEL_ID,
|
|
|
15 |
device_map="auto"
|
16 |
)
|
17 |
|
18 |
+
# Use pipeline for easier text generation
|
19 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
20 |
+
|
21 |
@app.get("/", response_class=HTMLResponse)
|
22 |
def index():
|
23 |
return """
|
|
|
35 |
|
36 |
@app.post("/summarize", response_class=HTMLResponse)
|
37 |
def summarize(text: str = Form(...)):
|
38 |
+
prompt = (
|
39 |
+
"Below is a passage of text. Please provide a concise summary in 2-4 sentences.\n\n"
|
40 |
+
f"Text:\n{text.strip()}\n\nSummary:"
|
41 |
+
)
|
42 |
+
# Generate output using the pipeline
|
43 |
+
outputs = pipe(
|
44 |
+
prompt,
|
45 |
max_new_tokens=150,
|
46 |
+
do_sample=True,
|
47 |
+
temperature=0.7,
|
48 |
+
top_p=0.95,
|
49 |
+
eos_token_id=tokenizer.eos_token_id,
|
50 |
+
pad_token_id=tokenizer.eos_token_id
|
51 |
)
|
52 |
+
output_text = outputs[0]['generated_text']
|
53 |
+
# Extract only the summary after 'Summary:'
|
54 |
+
summary = output_text.split("Summary:")[-1].strip()
|
55 |
+
return f"<h2>Summary</h2><pre>{summary}</pre><a href='/'>Back</a>"
|