Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
from peft import PeftModel
|
| 5 |
|
| 6 |
class ModelInput(BaseModel):
|
| 7 |
prompt: str
|
|
@@ -9,33 +8,34 @@ class ModelInput(BaseModel):
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
| 14 |
-
adapter_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
| 15 |
|
| 16 |
-
|
| 17 |
-
tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
device_map="auto",
|
| 23 |
-
trust_remote_code=True
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
# Load and merge adapter weights
|
| 27 |
-
model = PeftModel.from_pretrained(base_model, adapter_path)
|
| 28 |
-
model = model.merge_and_unload()
|
| 29 |
-
|
| 30 |
-
# Initialize pipeline
|
| 31 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 32 |
|
| 33 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
|
|
| 34 |
try:
|
|
|
|
| 35 |
messages = [{"role": "user", "content": instruction}]
|
| 36 |
input_text = tokenizer.apply_chat_template(
|
| 37 |
messages, tokenize=False, add_generation_prompt=True
|
| 38 |
)
|
|
|
|
|
|
|
| 39 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
| 40 |
outputs = model.generate(
|
| 41 |
inputs,
|
|
@@ -44,13 +44,17 @@ def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
| 44 |
top_p=0.9,
|
| 45 |
do_sample=True,
|
| 46 |
)
|
|
|
|
|
|
|
| 47 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 48 |
return response
|
|
|
|
| 49 |
except Exception as e:
|
| 50 |
raise ValueError(f"Error generating response: {e}")
|
| 51 |
|
| 52 |
@app.post("/generate")
|
| 53 |
-
def generate_text(input: ModelInput):
|
|
|
|
| 54 |
try:
|
| 55 |
response = generate_response(
|
| 56 |
model=model,
|
|
@@ -59,9 +63,10 @@ def generate_text(input: ModelInput):
|
|
| 59 |
max_new_tokens=input.max_new_tokens
|
| 60 |
)
|
| 61 |
return {"generated_text": response}
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
raise HTTPException(status_code=500, detail=str(e))
|
| 64 |
|
| 65 |
@app.get("/")
|
| 66 |
-
def root():
|
| 67 |
-
return {"message": "Welcome to the
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
|
|
|
| 4 |
|
| 5 |
class ModelInput(BaseModel):
|
| 6 |
prompt: str
|
|
|
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
|
| 11 |
+
# Since we're getting config errors with PEFT, let's load the fine-tuned model directly
|
| 12 |
+
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
|
|
|
| 13 |
|
| 14 |
+
try:
|
| 15 |
+
# Load the model and tokenizer directly from your fine-tuned version
|
| 16 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 17 |
+
model_path,
|
| 18 |
+
trust_remote_code=True,
|
| 19 |
+
device_map="auto"
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 23 |
+
print("Model loaded successfully!")
|
| 24 |
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"Error loading model: {e}")
|
| 27 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
| 30 |
+
"""Generate a response from the model based on an instruction."""
|
| 31 |
try:
|
| 32 |
+
# Format the input
|
| 33 |
messages = [{"role": "user", "content": instruction}]
|
| 34 |
input_text = tokenizer.apply_chat_template(
|
| 35 |
messages, tokenize=False, add_generation_prompt=True
|
| 36 |
)
|
| 37 |
+
|
| 38 |
+
# Generate
|
| 39 |
inputs = tokenizer.encode(input_text, return_tensors="pt").to(model.device)
|
| 40 |
outputs = model.generate(
|
| 41 |
inputs,
|
|
|
|
| 44 |
top_p=0.9,
|
| 45 |
do_sample=True,
|
| 46 |
)
|
| 47 |
+
|
| 48 |
+
# Decode
|
| 49 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 50 |
return response
|
| 51 |
+
|
| 52 |
except Exception as e:
|
| 53 |
raise ValueError(f"Error generating response: {e}")
|
| 54 |
|
| 55 |
@app.post("/generate")
|
| 56 |
+
async def generate_text(input: ModelInput):
|
| 57 |
+
"""API endpoint to generate text."""
|
| 58 |
try:
|
| 59 |
response = generate_response(
|
| 60 |
model=model,
|
|
|
|
| 63 |
max_new_tokens=input.max_new_tokens
|
| 64 |
)
|
| 65 |
return {"generated_text": response}
|
| 66 |
+
|
| 67 |
except Exception as e:
|
| 68 |
raise HTTPException(status_code=500, detail=str(e))
|
| 69 |
|
| 70 |
@app.get("/")
|
| 71 |
+
async def root():
|
| 72 |
+
return {"message": "Welcome to the Model API!"}
|