Update app.py
Browse files
app.py
CHANGED
|
@@ -11,34 +11,46 @@ class ModelInput(BaseModel):
|
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
# Load your model and tokenizer
|
| 14 |
-
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 17 |
|
| 18 |
# Initialize the pipeline
|
| 19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def generate_response(model, tokenizer, instruction):
|
| 24 |
"""Generate a response from the model based on an instruction."""
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
messages
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
|
|
|
| 38 |
def generate_text(input: ModelInput):
|
|
|
|
| 39 |
try:
|
| 40 |
-
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
raise HTTPException(status_code=500, detail=str(e))
|
| 44 |
|
|
|
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
# Load your model and tokenizer
|
| 14 |
+
model_path = "khurrameycon/SmolLM-135M-Instruct-qa_pairs_converted.json-25epochs"
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 16 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 17 |
|
| 18 |
# Initialize the pipeline
|
| 19 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 20 |
|
| 21 |
+
# Helper function to generate a response
|
| 22 |
+
def generate_response(model, tokenizer, instruction, max_new_tokens=128):
|
|
|
|
| 23 |
"""Generate a response from the model based on an instruction."""
|
| 24 |
+
try:
|
| 25 |
+
# Format the input as chat messages if necessary
|
| 26 |
+
messages = [{"role": "user", "content": instruction}]
|
| 27 |
+
input_text = tokenizer.apply_chat_template(
|
| 28 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 29 |
+
)
|
| 30 |
+
# Tokenize and generate the output
|
| 31 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt")
|
| 32 |
+
outputs = model.generate(
|
| 33 |
+
inputs,
|
| 34 |
+
max_new_tokens=max_new_tokens,
|
| 35 |
+
temperature=0.2,
|
| 36 |
+
top_p=0.9,
|
| 37 |
+
do_sample=True,
|
| 38 |
+
)
|
| 39 |
+
# Decode the output
|
| 40 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 41 |
+
return response
|
| 42 |
+
except Exception as e:
|
| 43 |
+
raise ValueError(f"Error generating response: {e}")
|
| 44 |
|
| 45 |
+
@app.post("/generate")
|
| 46 |
def generate_text(input: ModelInput):
|
| 47 |
+
"""API endpoint to generate text."""
|
| 48 |
try:
|
| 49 |
+
# Call the helper function
|
| 50 |
+
response = generate_response(
|
| 51 |
+
model=model, tokenizer=tokenizer, instruction=input.prompt, max_new_tokens=input.max_new_tokens
|
| 52 |
+
)
|
| 53 |
+
return {"generated_text": response}
|
| 54 |
except Exception as e:
|
| 55 |
raise HTTPException(status_code=500, detail=str(e))
|
| 56 |
|