Spaces:
Sleeping
Sleeping
File size: 5,247 Bytes
16997b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import os
openai.api_key= os.environ.get('API_OPENAI')
AIRTABLE_API_KEY = os.environ.get('API_AIRTABLE')
import gradio as gr
import os
import csv
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
import openai
import pinecone
import datetime
from tqdm.autonotebook import tqdm
import requests
embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key)
AIRTABLE_ENDPOINT = "https://api.airtable.com/v0/appv2hF1PzrseVdeW/data_m"
AIRTABLE_ENDPOINT_LOG = "https://api.airtable.com/v0/appv2hF1PzrseVdeW/log"
HEADERS = {
"Authorization": f"Bearer {AIRTABLE_API_KEY}",
"Content-Type": "application/json"
}
def get_text_by_name(name):
params = {
"filterByFormula": f"{{name}} = '{name}'"
}
response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params)
if response.status_code != 200:
print(f"Error fetching data. Status code: {response.status_code}. Content: {response.content}")
return None
records = response.json().get("records")
if not records:
print(f"No record found with name: {name}")
return None
# Assuming that names are unique, take the first record.
return records[0]["fields"].get("text")
def upload_to_airtable_log(date, question, answer, rating, comment):
data = {
"records": [{
"fields": {
"date": date,
"question": question,
"answer": answer,
"rating": rating,
"comment": comment
}
}]
}
response = requests.post(AIRTABLE_ENDPOINT_LOG, headers=HEADERS, json=data)
if response.status_code != 200:
print(f"Error uploading airtable (log ) Status code: {response.status_code}. Content: {response.content}")
else:
print(f"Successfully uploaded airtable log")
def query_gpt_3_5(prompt, context):
prompt = "Instruction: Твоя роль - кваліфікований співробітник саппорту у системи YouControl. Потрібно відповісти на питання від користувача з огляду на контекст. Контекст ми беремо з бази знань, але вона може бути не повна. Якщо контекст не коректний, то відповідай на свій розсуд або передай запит сапорту, про контекс нічого не пишемо у відповіді."+"""
"""+ "question:" + prompt + """
context:""" + context + """
answer:"""
completion = openai.ChatCompletion.create(
model="gpt-4-0613",
messages=[
{"role": "user", "content": prompt}
]
)
return completion.choices[0].message.content
def print_docs(docs):
for doc in docs:
print(f"Chunk: {doc.page_content}")
print(f"Content: {doc.metadata['source']}\n")
# initialize pinecone
pinecone.init(
api_key="078ea261-eaa8-4920-8af6-0870f7f8a096", # find at app.pinecone.io
environment="eu-west4-gcp" # next to api key in console
)
index_name = "yc-faq"
vectorstore = Pinecone.from_existing_index(index_name, embeddings)
def ask_yc_bot(question):
if (len(question)<3 ): return "Не зрозумів питання"
docs = vectorstore.similarity_search(question)
print_docs(docs)
source_name = docs[0].metadata['source']
file_name = source_name.replace("/content/drive/MyDrive/yc-bot/faq/", "")
result_text = get_text_by_name(file_name)
context = ""
if result_text:
print(f"Text for '{file_name}' is: {result_text}")
context = context + result_text
#print (len(context))
result = query_gpt_3_5(question, context)
result = result + """
--------------------------------------------------------
[CONTEXT]
""" + context
return result
def comment_bot(slider_value, comment_text, question_text, answer_text):
date_d = datetime.datetime.now().date()
date_string = date_d.isoformat()
upload_to_airtable_log(date_string, question_text, answer_text, slider_value, comment_text)
return " " # Если функция должна что-то возвращать, замените это на нужный вывод
import gradio as gr
description = """<h1>YC - FAQ_BOT</h1>
"""
demo = gr.Blocks()
with demo:
gr.HTML(description)
with gr.Row():
with gr.Column(scale=1):
text = gr.Textbox(lines=7, label = "Вопрос?")
b1 = gr.Button("Спросить")
with gr.Column(scale=2):
answer = gr.Textbox(lines=10, label = "Ответ:")
with gr.Row():
radio = gr.Radio(label="Рейтинг ответа", choices=["Нет", "1", "2", "3", "4", "5"], value="Нет")
comment = gr.Textbox(lines=2, label = "Комментарий")
with gr.Row():
b2 = gr.Button("Прокомментировать ответ ")
inp_2 = [radio, comment, text, answer]
b1.click(ask_yc_bot, inputs=text, outputs=answer)
b2.click(comment_bot, inputs=inp_2, outputs=comment)
demo.launch(share=False, debug=True) |