File size: 5,247 Bytes
16997b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
openai.api_key= os.environ.get('API_OPENAI')
AIRTABLE_API_KEY = os.environ.get('API_AIRTABLE')

import gradio as gr
import os
import csv
from langchain.vectorstores import Pinecone
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
import openai
import pinecone
import datetime
from tqdm.autonotebook import tqdm
import requests

embeddings = OpenAIEmbeddings(openai_api_key=openai.api_key)

AIRTABLE_ENDPOINT = "https://api.airtable.com/v0/appv2hF1PzrseVdeW/data_m"
AIRTABLE_ENDPOINT_LOG = "https://api.airtable.com/v0/appv2hF1PzrseVdeW/log"
HEADERS = {
    "Authorization": f"Bearer {AIRTABLE_API_KEY}",
    "Content-Type": "application/json"
}

def get_text_by_name(name):
    params = {
        "filterByFormula": f"{{name}} = '{name}'"
    }
    response = requests.get(AIRTABLE_ENDPOINT, headers=HEADERS, params=params)

    if response.status_code != 200:
        print(f"Error fetching data. Status code: {response.status_code}. Content: {response.content}")
        return None

    records = response.json().get("records")

    if not records:
        print(f"No record found with name: {name}")
        return None

    # Assuming that names are unique, take the first record.
    return records[0]["fields"].get("text")

def upload_to_airtable_log(date, question, answer, rating, comment):
    data = {
        "records": [{
            "fields": {
                 "date": date,
                 "question": question,
                 "answer": answer,
                 "rating": rating,
                 "comment": comment
            }
        }]
    }
    response = requests.post(AIRTABLE_ENDPOINT_LOG, headers=HEADERS, json=data)

    if response.status_code != 200:
        print(f"Error uploading airtable (log ) Status code: {response.status_code}. Content: {response.content}")
    else:
        print(f"Successfully uploaded airtable log")

def query_gpt_3_5(prompt, context):
    prompt = "Instruction: Твоя роль - кваліфікований співробітник саппорту у системи YouControl. Потрібно відповісти на питання від користувача з огляду на контекст. Контекст ми беремо з бази знань, але вона може бути не повна.  Якщо контекст не коректний, то відповідай на свій розсуд або передай запит сапорту, про контекс нічого не пишемо у відповіді."+"""
    """+ "question:" + prompt + """
    context:""" + context + """
    answer:"""
    completion = openai.ChatCompletion.create(
    model="gpt-4-0613",
    messages=[
      {"role": "user", "content": prompt}
              ]
    )
    return completion.choices[0].message.content

def print_docs(docs):
    for doc in docs:
        print(f"Chunk: {doc.page_content}")
        print(f"Content: {doc.metadata['source']}\n")

# initialize pinecone
pinecone.init(
    api_key="078ea261-eaa8-4920-8af6-0870f7f8a096",  # find at app.pinecone.io
    environment="eu-west4-gcp"  # next to api key in console
)

index_name = "yc-faq"
vectorstore = Pinecone.from_existing_index(index_name, embeddings)

def ask_yc_bot(question):
  if (len(question)<3 ): return "Не зрозумів питання"
  docs = vectorstore.similarity_search(question)
  print_docs(docs)
  source_name = docs[0].metadata['source']
  file_name  = source_name.replace("/content/drive/MyDrive/yc-bot/faq/", "")
  result_text = get_text_by_name(file_name)
  context = ""
  if result_text:
      print(f"Text for '{file_name}' is: {result_text}")
      context = context +  result_text



  #print (len(context))
  result = query_gpt_3_5(question, context)
  result = result + """
--------------------------------------------------------
[CONTEXT]
""" + context
  return result


def comment_bot(slider_value, comment_text, question_text, answer_text):
    date_d  = datetime.datetime.now().date()
    date_string = date_d.isoformat()
    upload_to_airtable_log(date_string, question_text, answer_text, slider_value, comment_text)

    return " "  # Если функция должна что-то возвращать, замените это на нужный вывод

import gradio as gr

description = """<h1>YC - FAQ_BOT</h1>
"""

demo = gr.Blocks()

with demo:
    gr.HTML(description)
    with gr.Row():
      with gr.Column(scale=1):
        text = gr.Textbox(lines=7, label = "Вопрос?")
        b1 = gr.Button("Спросить")
      with gr.Column(scale=2):
        answer = gr.Textbox(lines=10, label = "Ответ:")

    with gr.Row():
        radio = gr.Radio(label="Рейтинг ответа", choices=["Нет", "1", "2", "3", "4", "5"], value="Нет")
        comment = gr.Textbox(lines=2, label = "Комментарий")
    with gr.Row():
        b2 = gr.Button("Прокомментировать ответ ")

    inp_2 = [radio, comment, text, answer]
    b1.click(ask_yc_bot, inputs=text, outputs=answer)
    b2.click(comment_bot, inputs=inp_2, outputs=comment)


demo.launch(share=False, debug=True)