Spaces:
Running
Running
Commit
·
6ca2788
1
Parent(s):
84f5285
Update src/compute.py
Browse files- src/compute.py +125 -4
src/compute.py
CHANGED
@@ -1,3 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
import glob
|
@@ -23,7 +143,8 @@ def chatgpt_json(merge_file):
|
|
23 |
if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
|
24 |
correct += 1
|
25 |
|
26 |
-
dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
|
|
|
27 |
return dataset_scores_dict
|
28 |
|
29 |
|
@@ -63,21 +184,21 @@ def compute_scores(merge_file):
|
|
63 |
exclusive_understanding_score = 0
|
64 |
# import ipdb; ipdb.set_trace()
|
65 |
for dataset_name, weight in exclusive_understanding_weight.items():
|
66 |
-
exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
67 |
|
68 |
# Prior Knowledge-based Question-answer
|
69 |
prior_QA_weight = dataset_weight[2]
|
70 |
weights_sum = sum(prior_QA_weight.values())
|
71 |
prior_QA_score = 0
|
72 |
for dataset_name, weight in prior_QA_weight.items():
|
73 |
-
prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
74 |
|
75 |
# Comprehension and Decision-making
|
76 |
com_and_dec_QA_weight = dataset_weight[3]
|
77 |
weights_sum = sum(com_and_dec_QA_weight.values())
|
78 |
com_and_dec_QA_score = 0
|
79 |
for dataset_name, weight in com_and_dec_QA_weight.items():
|
80 |
-
com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
81 |
|
82 |
dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
|
83 |
dataset_score_dict['Prior_Knowledge'] = prior_QA_score
|
|
|
1 |
+
# import json
|
2 |
+
# import os
|
3 |
+
# import glob
|
4 |
+
# import argparse
|
5 |
+
# import csv
|
6 |
+
#
|
7 |
+
#
|
8 |
+
# def chatgpt_json(merge_file):
|
9 |
+
# # chat results
|
10 |
+
# merge_data = merge_file.decode("utf-8")
|
11 |
+
# merge_data = eval(merge_data)
|
12 |
+
# correct_answer_file = 'file/ANSWER.json'
|
13 |
+
# with open(correct_answer_file, 'r', encoding='utf-8') as f:
|
14 |
+
# correct_answer_data = json.load(f)
|
15 |
+
#
|
16 |
+
# dataset_scores_dict = {}
|
17 |
+
# for dataset_name, item in merge_data.items():
|
18 |
+
#
|
19 |
+
# total_nums = len(item)
|
20 |
+
# correct = 0
|
21 |
+
# # assert len(item) >= len(correct_answer_data[dataset_name]), f'Video-Bench-Input.json---{dataset_name}---is incomplete!'
|
22 |
+
# for id, sub_item in item.items():
|
23 |
+
# if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
|
24 |
+
# correct += 1
|
25 |
+
#
|
26 |
+
# dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
|
27 |
+
# return dataset_scores_dict
|
28 |
+
#
|
29 |
+
#
|
30 |
+
# def compute_scores(merge_file):
|
31 |
+
# dataset_score_dict = chatgpt_json(merge_file)
|
32 |
+
# dataset_weight = {
|
33 |
+
# 1:
|
34 |
+
# {
|
35 |
+
# "ActivityNet": 1,
|
36 |
+
# "MSVD": 1,
|
37 |
+
# "MSRVTT": 1,
|
38 |
+
# "TGIF": 1,
|
39 |
+
# "Youcook2": 1,
|
40 |
+
# "Ucfcrime": 1,
|
41 |
+
# "MOT": 0.5,
|
42 |
+
# },
|
43 |
+
#
|
44 |
+
# 2:
|
45 |
+
# {
|
46 |
+
# "TVQA": 1,
|
47 |
+
# "MV": 1,
|
48 |
+
# "NBA": 1,
|
49 |
+
# },
|
50 |
+
#
|
51 |
+
# 3:
|
52 |
+
# {
|
53 |
+
# "Driving-exam": 0.5,
|
54 |
+
# "Driving-decision-making": 1,
|
55 |
+
# "SQA3D": 1,
|
56 |
+
# }
|
57 |
+
#
|
58 |
+
# }
|
59 |
+
#
|
60 |
+
# # Video-exclusive Understanding score
|
61 |
+
# exclusive_understanding_weight = dataset_weight[1]
|
62 |
+
# weights_sum = sum(exclusive_understanding_weight.values())
|
63 |
+
# exclusive_understanding_score = 0
|
64 |
+
# # import ipdb; ipdb.set_trace()
|
65 |
+
# for dataset_name, weight in exclusive_understanding_weight.items():
|
66 |
+
# exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
67 |
+
#
|
68 |
+
# # Prior Knowledge-based Question-answer
|
69 |
+
# prior_QA_weight = dataset_weight[2]
|
70 |
+
# weights_sum = sum(prior_QA_weight.values())
|
71 |
+
# prior_QA_score = 0
|
72 |
+
# for dataset_name, weight in prior_QA_weight.items():
|
73 |
+
# prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
74 |
+
#
|
75 |
+
# # Comprehension and Decision-making
|
76 |
+
# com_and_dec_QA_weight = dataset_weight[3]
|
77 |
+
# weights_sum = sum(com_and_dec_QA_weight.values())
|
78 |
+
# com_and_dec_QA_score = 0
|
79 |
+
# for dataset_name, weight in com_and_dec_QA_weight.items():
|
80 |
+
# com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
|
81 |
+
#
|
82 |
+
# dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
|
83 |
+
# dataset_score_dict['Prior_Knowledge'] = prior_QA_score
|
84 |
+
# dataset_score_dict['Comprehension_and_Decision-making'] = com_and_dec_QA_score
|
85 |
+
#
|
86 |
+
# # final score
|
87 |
+
# final_score = sum([exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score]) / 3
|
88 |
+
# dataset_score_dict['final_score'] = final_score
|
89 |
+
#
|
90 |
+
# # print(dataset_score_dict)
|
91 |
+
# # with open(args.score_output_file, 'w', encoding='utf-8') as f:
|
92 |
+
# # json.dump(dataset_score_dict, f, indent=2)
|
93 |
+
# # print(f'{args.score_output_file} is saved!')
|
94 |
+
# # ========================
|
95 |
+
# data = [
|
96 |
+
#
|
97 |
+
# ["Avg. All", "Avg. Video-Exclusive", "Avg. Prior-Knowledge QA", "Avg. Decision-Making",
|
98 |
+
# "ActivityNet", "MSVD", "MSRVTT", "TGIF", "Youcook2", "Ucfcrime",
|
99 |
+
# "MOT", "TVQA", "MV", "NBA", "Driving-exam", "Driving-decision-making", "SQA3D"],
|
100 |
+
#
|
101 |
+
# [final_score, exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score,
|
102 |
+
# dataset_score_dict['ActivityNet'],
|
103 |
+
# dataset_score_dict["MSVD"],
|
104 |
+
# dataset_score_dict['MSRVTT'],
|
105 |
+
# dataset_score_dict['TGIF'],
|
106 |
+
# dataset_score_dict['Youcook2'],
|
107 |
+
# dataset_score_dict['Ucfcrime'],
|
108 |
+
# dataset_score_dict['MOT'],
|
109 |
+
# dataset_score_dict['TVQA'],
|
110 |
+
# dataset_score_dict['MV'],
|
111 |
+
# dataset_score_dict['NBA'],
|
112 |
+
# dataset_score_dict['Driving-exam'],
|
113 |
+
# dataset_score_dict['Driving-decision-making'],
|
114 |
+
# dataset_score_dict['SQA3D'],
|
115 |
+
# ],
|
116 |
+
# ]
|
117 |
+
#
|
118 |
+
# return data
|
119 |
+
#
|
120 |
+
|
121 |
import json
|
122 |
import os
|
123 |
import glob
|
|
|
143 |
if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
|
144 |
correct += 1
|
145 |
|
146 |
+
# dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
|
147 |
+
dataset_scores_dict[dataset_name] = round(correct / total_nums , 4)
|
148 |
return dataset_scores_dict
|
149 |
|
150 |
|
|
|
184 |
exclusive_understanding_score = 0
|
185 |
# import ipdb; ipdb.set_trace()
|
186 |
for dataset_name, weight in exclusive_understanding_weight.items():
|
187 |
+
exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum * 100
|
188 |
|
189 |
# Prior Knowledge-based Question-answer
|
190 |
prior_QA_weight = dataset_weight[2]
|
191 |
weights_sum = sum(prior_QA_weight.values())
|
192 |
prior_QA_score = 0
|
193 |
for dataset_name, weight in prior_QA_weight.items():
|
194 |
+
prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100
|
195 |
|
196 |
# Comprehension and Decision-making
|
197 |
com_and_dec_QA_weight = dataset_weight[3]
|
198 |
weights_sum = sum(com_and_dec_QA_weight.values())
|
199 |
com_and_dec_QA_score = 0
|
200 |
for dataset_name, weight in com_and_dec_QA_weight.items():
|
201 |
+
com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100
|
202 |
|
203 |
dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
|
204 |
dataset_score_dict['Prior_Knowledge'] = prior_QA_score
|