Spaces:
Running
Running
File size: 4,092 Bytes
3fb43f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
import json
import os
import glob
import argparse
import csv
def chatgpt_json(merge_file):
# chat results
merge_data = merge_file.decode("utf-8")
merge_data = eval(merge_data)
correct_answer_file = 'file/ANSWER.json'
with open(correct_answer_file, 'r', encoding='utf-8') as f:
correct_answer_data = json.load(f)
dataset_scores_dict = {}
for dataset_name, item in merge_data.items():
total_nums = len(item)
correct = 0
# assert len(item) >= len(correct_answer_data[dataset_name]), f'Video-Bench-Input.json---{dataset_name}---is incomplete!'
for id, sub_item in item.items():
if sub_item['output_chatgpt_choice'] == correct_answer_data[dataset_name][id]['answer']:
correct += 1
dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
return dataset_scores_dict
def compute_scores(merge_file):
dataset_score_dict = chatgpt_json(merge_file)
dataset_weight = {
1:
{
"ActivityNet": 1,
"MSVD": 1,
"MSRVTT": 1,
"TGIF": 1,
"Youcook2": 1,
"Ucfcrime": 1,
"MOT": 0.5,
},
2:
{
"TVQA": 1,
"MV": 1,
"NBA": 1,
},
3:
{
"Driving-exam": 0.5,
"Driving-decision-making": 1,
"SQA3D": 1,
}
}
# Video-exclusive Understanding score
exclusive_understanding_weight = dataset_weight[1]
weights_sum = sum(exclusive_understanding_weight.values())
exclusive_understanding_score = 0
# import ipdb; ipdb.set_trace()
for dataset_name, weight in exclusive_understanding_weight.items():
exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum
# Prior Knowledge-based Question-answer
prior_QA_weight = dataset_weight[2]
weights_sum = sum(prior_QA_weight.values())
prior_QA_score = 0
for dataset_name, weight in prior_QA_weight.items():
prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
# Comprehension and Decision-making
com_and_dec_QA_weight = dataset_weight[3]
weights_sum = sum(com_and_dec_QA_weight.values())
com_and_dec_QA_score = 0
for dataset_name, weight in com_and_dec_QA_weight.items():
com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum
dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
dataset_score_dict['Prior_Knowledge'] = prior_QA_score
dataset_score_dict['Comprehension_and_Decision-making'] = com_and_dec_QA_score
# final score
final_score = sum([exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score]) / 3
dataset_score_dict['final_score'] = final_score
# print(dataset_score_dict)
# with open(args.score_output_file, 'w', encoding='utf-8') as f:
# json.dump(dataset_score_dict, f, indent=2)
# print(f'{args.score_output_file} is saved!')
# ========================
data = [
["Avg. All", "Avg. Video-Exclusive", "Avg. Prior-Knowledge QA", "Avg. Decision-Making",
"ActivityNet", "MSVD", "MSRVTT", "TGIF", "Youcook2", "Ucfcrime",
"MOT", "TVQA", "MV", "NBA", "Driving-exam", "Driving-decision-making", "SQA3D"],
[final_score, exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score,
dataset_score_dict['ActivityNet'],
dataset_score_dict["MSVD"],
dataset_score_dict['MSRVTT'],
dataset_score_dict['TGIF'],
dataset_score_dict['Youcook2'],
dataset_score_dict['Ucfcrime'],
dataset_score_dict['MOT'],
dataset_score_dict['TVQA'],
dataset_score_dict['MV'],
dataset_score_dict['NBA'],
dataset_score_dict['Driving-exam'],
dataset_score_dict['Driving-decision-making'],
dataset_score_dict['SQA3D'],
],
]
return data
|