File size: 4,535 Bytes
4ad296d
 
 
 
 
 
 
 
 
6232477
 
 
 
 
 
 
 
4ad296d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6232477
 
 
4ad296d
 
6232477
 
 
 
 
 
 
4ad296d
 
 
 
 
 
 
 
6232477
 
4ad296d
 
6232477
4ad296d
 
6232477
 
4ad296d
6232477
 
4ad296d
 
 
 
 
 
 
 
 
 
 
6232477
 
4ad296d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6232477
4ad296d
ea7e2bf
 
 
 
 
 
 
 
6232477
4ad296d
6232477
 
4ad296d
 
 
 
6232477
ea7e2bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6232477
4ad296d
 
 
 
 
 
 
 
ea7e2bf
 
 
6232477
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import uvicorn 
import threading
from typing import Optional
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForTokenClassification
import pandas as pd
#import datasets
from pprint import pprint 

import gradio as gr
from transformers import pipeline
from fastapi import FastAPI
from pydantic import BaseModel
from typing import List, Dict

# Define the FastAPI app
app = FastAPI()
model_cache: Optional[object] = None

def load_model():
    
    tokenizer = AutoTokenizer.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
    model = AutoModelForTokenClassification.from_pretrained("LampOfSocrates/bert-cased-plodcw-sourav")
    # Mapping labels
    id2label = model.config.id2label
    # Print the label mapping
    print(f"Can recognise the following labels {id2label}")

    # Load the NER model and tokenizer from Hugging Face
    #ner_pipeline = pipeline("ner", model="dbmdz/bert-large-cased-finetuned-conll03-english")
    model = pipeline("ner", model=model, tokenizer = tokenizer)
    return model 

def load_plod_cw_dataset():
    from datasets import load_dataset
    dataset = load_dataset("surrey-nlp/PLOD-CW")
    return dataset

def get_cached_model():
    global model_cache
    if model_cache is None:
        model_cache = load_model()
    return model_cache

# Cache the model when the server starts
model = get_cached_model()



class Entity(BaseModel):
    entity: str
    score: float
    start: int
    end: int
    word: str

class NERResponse(BaseModel):
    entities: List[Entity]

class NERRequest(BaseModel):
    text: str

@app.get("/hello")
def read_root():
    return {"message": "Hello, World!"}


@app.post("/ner", response_model=NERResponse)
def get_entities(request: NERRequest):
    print(request)
    model = get_cached_model()
    # Use the NER model to detect entities
    entities = model(request.text)
    print(entities[0].keys())
    # Convert entities to the response model
    response_entities = [Entity(**entity) for entity in entities]
    print(response_entities[0])
    return NERResponse(entities=response_entities)

def get_color_for_label(label: str) -> str:
    # Define a mapping of labels to colors
    color_mapping = {
        "I-LF": "red",
        "B-AC": "blue",
        "LOC": "green",
        # Add more labels and colors as needed
    }
    return color_mapping.get(label, "black")  # Default to black if label not found


# Define the Gradio interface function
def ner_demo(text):
    model = get_cached_model()
    entities = model(text)
    #return {"entities": entities}

    # Color code the entities
    color_coded_text = text
    for entity in entities:
        #print(entity)
        start, end, label = entity["start"], entity["end"], entity["entity"]
        color = get_color_for_label(label)  # You need to define this function
        entity_text = text[start:end]
        colored_entity = f'<span style="color: {color}; font-weight: bold;">{entity_text}</span>'
        color_coded_text = color_coded_text[:start] + colored_entity + color_coded_text[end:]
    
    return color_coded_text

PROJECT_INTRO = "This is a HF Spaces hosted Gradio App built by NLP Group 27 . The model has been trained on surrey-nlp/PLOD-CW dataset"

def echo(text, request: gr.Request):
    if request:
        print("Request headers dictionary:", request.headers)
        print("IP address:", request.client.host)
        print("Query parameters:", dict(request.query_params))
    return text

# Create the Gradio interface
demo = gr.Interface(
    fn=ner_demo,
    inputs=gr.Textbox(lines=10, placeholder="Enter text here..."),
    outputs="html",
    #outputs=gr.JSON(),
    title="Named Entity Recognition on PLOD-CW ",
    description=f"{PROJECT_INTRO}\n\nEnter text to extract named entities using a NER model."
)
'''
with gr.Blocks() as demo:
    gr.Markdown("# Page Title")
    gr.Markdown("## Subtitle with h2 Font")
    inputs=gr.Textbox(lines=10, placeholder="Enter text here...", label="Input Text")

    with gr.Column():
        echo_output = gr.Textbox(label="Echo Output")
        html_output = ner_demo

    with gr.Column():
        button1 = gr.Button("Submit")
'''            

CUSTOM_PATH = "/gradio"
app = gr.mount_gradio_app(app, demo, path=CUSTOM_PATH)

# Function to run FastAPI
def run_fastapi():
    uvicorn.run(app, host="0.0.0.0", port=8000)

# Function to run Gradio
def run_gradio():
    demo.launch(server_name="0.0.0.0", server_port=7860)


run_fastapi()
#threading.Thread(target=run_gradio).start()