Spaces:
Runtime error
Runtime error
| #Import transformers and gradio | |
| import transformers | |
| import gradio as gr | |
| import git | |
| #Load arabert preprocessor | |
| import git | |
| git.Git("arabert").clone("https://github.com/aub-mind/arabert") | |
| from arabert.preprocess import ArabertPreprocessor | |
| arabert_prep = ArabertPreprocessor(model_name="bert-base-arabert", keep_emojis=False) | |
| #Load Model | |
| from transformers import EncoderDecoderModel, AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("tareknaous/bert2bert-empathetic-response-msa") | |
| model = EncoderDecoderModel.from_pretrained("tareknaous/bert2bert-empathetic-response-msa") | |
| model.eval() | |
| def generate_response(text): | |
| text_clean = arabert_prep.preprocess(text) | |
| inputs = tokenizer.encode_plus(text_clean,return_tensors='pt') | |
| outputs = model.generate(input_ids = inputs.input_ids, | |
| attention_mask = inputs.attention_mask, | |
| do_sample = True) | |
| preds = tokenizer.batch_decode(outputs) | |
| response = str(preds) | |
| response = response.replace("\'", '') | |
| response = response.replace("[[CLS]", '') | |
| response = response.replace("[SEP]]", '') | |
| response = str(arabert_prep.desegment(response)) | |
| return response | |
| title = 'BERT2BERT Response Generation in Arabic' | |
| description = 'This demo is for a BERT2BERT model trained for single-turn open-domain dialogue response generation in Modern Standard Arabic' | |
| gr.Interface(fn=generate_response, | |
| inputs=[ | |
| gr.inputs.Textbox(), | |
| ], | |
| outputs="text", | |
| title=title, | |
| description=description).launch() |