Spaces:
Build error
Build error
import pandas as pd | |
train = pd.read_csv('train_ctrUa4K.csv') | |
train.head() | |
train['Gender']= train['Gender'].map({'Male':0, 'Female':1}) | |
train['Married']= train['Married'].map({'No':0, 'Yes':1}) | |
train['Loan_Status']= train['Loan_Status'].map({'N':0, 'Y':1}) | |
train.isnull().sum() | |
train = train.dropna() | |
train.isnull().sum() | |
X = train[['Gender', 'Married', 'ApplicantIncome', 'LoanAmount', 'Credit_History']] | |
y = train.Loan_Status | |
X.shape, y.shape | |
from sklearn.model_selection import train_test_split | |
x_train, x_cv, y_train, y_cv = train_test_split(X,y, test_size = 0.2, random_state = 10) | |
from sklearn.ensemble import RandomForestClassifier | |
model = RandomForestClassifier(max_depth=4, random_state = 10) | |
model.fit(x_train, y_train) | |
from sklearn.metrics import accuracy_score | |
pred_cv = model.predict(x_cv) | |
accuracy_score(y_cv,pred_cv) | |
pred_train = model.predict(x_train) | |
accuracy_score(y_train,pred_train) | |
pred_train = model.predict(x_train) | |
accuracy_score(y_train,pred_train) | |
import pickle5 | |
pickle_out = open("classifier.pkl", mode = "wb") | |
pickle5.dump(model, pickle_out) | |
pickle_out.close() |