import torch import numpy as np from PIL import Image import pymeshlab import pymeshlab as ml from pymeshlab import PercentageValue from pytorch3d.renderer import TexturesVertex from pytorch3d.structures import Meshes import torch import torch.nn.functional as F from typing import List, Tuple from PIL import Image import trimesh EPSILON = 1e-8 def load_mesh_with_trimesh(file_name, file_type=None): import trimesh mesh: trimesh.Trimesh = trimesh.load(file_name, file_type=file_type) if isinstance(mesh, trimesh.Scene): assert len(mesh.geometry) > 0 # save to obj first and load again to avoid offset issue from io import BytesIO with BytesIO() as f: mesh.export(f, file_type="obj") f.seek(0) mesh = trimesh.load(f, file_type="obj") if isinstance(mesh, trimesh.Scene): # we lose texture information here mesh = trimesh.util.concatenate( tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces) for g in mesh.geometry.values())) assert isinstance(mesh, trimesh.Trimesh) vertices = torch.from_numpy(mesh.vertices).T faces = torch.from_numpy(mesh.faces).T colors = None if mesh.visual is not None: if hasattr(mesh.visual, 'vertex_colors'): colors = torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255. if colors is None: colors = torch.ones_like(vertices) * 0.5 return vertices, faces, colors def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes: verts = torch.from_numpy(mesh.vertex_matrix()).float() faces = torch.from_numpy(mesh.face_matrix()).long() colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float() textures = TexturesVertex(verts_features=[colors]) return Meshes(verts=[verts], faces=[faces], textures=textures) def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh: colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64) m1 = pymeshlab.Mesh( vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64), face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32), v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64), v_color_matrix=colors_in) return m1 def to_pyml_mesh(vertices,faces): m1 = pymeshlab.Mesh( vertex_matrix=vertices.cpu().float().numpy().astype(np.float64), face_matrix=faces.cpu().long().numpy().astype(np.int32), ) return m1 def to_py3d_mesh(vertices, faces, normals=None): from pytorch3d.structures import Meshes from pytorch3d.renderer.mesh.textures import TexturesVertex mesh = Meshes(verts=[vertices], faces=[faces], textures=None) if normals is None: normals = mesh.verts_normals_packed() # set normals as vertext colors mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5]) return mesh def from_py3d_mesh(mesh): return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed() def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float): """ rotate along y-axis normal_map: np.array, shape=(H, W, 3) in [-1, 1] angle: float, in degree """ angle = angle / 180 * np.pi R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]]) return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape) # from view coord to front view world coord def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray: # [0, 255] n_views = len(normal_pils) ret = [] for idx, rgba_normal in enumerate(normal_pils): # rotate normal normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1] alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1] normal_np = normal_np * 2 - 1 normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views)) normal_np = (normal_np + 1) / 2 normal_np = normal_np * alpha_np[..., None] # make bg black rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255] , axis=-1) if return_types == 'np': ret.append(rgba_normal_np) elif return_types == 'pil': ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) else: raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}") return ret def rotate_normalmap_by_angle_torch(normal_map, angle): """ rotate along y-axis normal_map: torch.Tensor, shape=(H, W, 3) in [-1, 1], device='cuda' angle: float, in degree """ angle = torch.tensor(angle / 180 * np.pi).to(normal_map) R = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)], [0, 1, 0], [-torch.sin(angle), 0, torch.cos(angle)]]).to(normal_map) return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape) def do_rotate(rgba_normal, angle): rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255 rotated_normal_tensor = rotate_normalmap_by_angle_torch(rgba_normal[..., :3] * 2 - 1, angle) rotated_normal_tensor = (rotated_normal_tensor + 1) / 2 rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]] # make bg black rgba_normal_np = torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy() return rgba_normal_np def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1): n_views = len(normal_pils) ret = [] for idx, rgba_normal in enumerate(normal_pils): # rotate normal angle = rotate_direction * idx * (360 / n_views) rgba_normal_np = do_rotate(np.array(rgba_normal), angle) if return_types == 'np': ret.append(rgba_normal_np) elif return_types == 'pil': ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) else: raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}") return ret def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)): ret = [] new_bkgd = np.array(new_bkgd).reshape(1, 1, 3) for rgba_img in img_pils: img_np = np.array(rgba_img)[:, :, :3] / 255 alpha_np = np.array(rgba_img)[:, :, 3] / 255 ori_bkgd = img_np[:1, :1] # color = ori_color * alpha + bkgd * (1-alpha) # ori_color = (color - bkgd * (1-alpha)) / alpha alpha_np_clamp = np.clip(alpha_np, 1e-6, 1) # avoid divide by zero ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None] img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd) rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1) ret.append(Image.fromarray(rgba_img_np.astype(np.uint8))) return ret def change_bkgd_to_normal(normal_pils) -> List[Image.Image]: n_views = len(normal_pils) ret = [] for idx, rgba_normal in enumerate(normal_pils): # calcuate background normal target_bkgd = rotate_normalmap_by_angle(np.array([[[0., 0., 1.]]]), idx * (360 / n_views)) normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1] alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1] normal_np = normal_np * 2 - 1 old_bkgd = normal_np[:1,:1] normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None] normal_np = normal_np * alpha_np[..., None] + target_bkgd * (1 - alpha_np[..., None]) normal_np = (normal_np + 1) / 2 rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[..., None] * 255] , axis=-1) ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8))) return ret def fix_vert_color_glb(mesh_path): from pygltflib import GLTF2, Material, PbrMetallicRoughness obj1 = GLTF2().load(mesh_path) obj1.meshes[0].primitives[0].material = 0 obj1.materials.append(Material( pbrMetallicRoughness = PbrMetallicRoughness( baseColorFactor = [1.0, 1.0, 1.0, 1.0], metallicFactor = 0., roughnessFactor = 1.0, ), emissiveFactor = [0.0, 0.0, 0.0], doubleSided = True, )) obj1.save(mesh_path) def srgb_to_linear(c_srgb): c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4) return c_linear.clip(0, 1.) def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True): # convert from pytorch3d meshes to trimesh mesh vertices = meshes.verts_packed().cpu().float().numpy() triangles = meshes.faces_packed().cpu().long().numpy() np_color = meshes.textures.verts_features_packed().cpu().float().numpy() if save_glb_path.endswith(".glb"): # rotate 180 along +Y vertices[:, [0, 2]] = -vertices[:, [0, 2]] if apply_sRGB_to_LinearRGB: np_color = srgb_to_linear(np_color) assert vertices.shape[0] == np_color.shape[0] assert np_color.shape[1] == 3 assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}" mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color) mesh.remove_unreferenced_vertices() # save mesh mesh.export(save_glb_path) if save_glb_path.endswith(".glb"): fix_vert_color_glb(save_glb_path) def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]: import time if '.' in save_mesh_prefix: save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1]) if with_timestamp: save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}" ret_mesh = save_mesh_prefix + ".glb" # optimizied version save_py3dmesh_with_trimesh_fast(meshes, ret_mesh) return ret_mesh, None def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25): ms = ml.MeshSet() ms.add_mesh(pyml_mesh, "cube_mesh") if apply_smooth: ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False) if apply_sub_divide: # 5s, slow ms.apply_filter("meshing_repair_non_manifold_vertices") ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces') ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=PercentageValue(sub_divide_threshold)) return meshlab_mesh_to_py3dmesh(ms.current_mesh()) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"): new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device) imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255 img_nps = imgs[..., :3] alpha_nps = imgs[..., 3] ori_bkgds = img_nps[:, :1, :1] alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1) ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1) ori_img_nps = torch.clamp(ori_img_nps, 0, 1) img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd) rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1) return rgba_img_np def rotation_matrix_axis_angle(axis, angle, device='cuda'): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by angle degrees, using PyTorch. """ if type(axis) != torch.tensor: axis = torch.tensor(axis, device=device) axis = axis.float().to(device) if type(angle) != torch.tensor: angle = torch.tensor(angle, device=device) angle = angle.float().to(device) theta = angle * torch.pi / 180.0 axis = torch.tensor(axis, dtype=torch.float32) if torch.dot(axis, axis) > 0: denom = torch.sqrt(torch.dot(axis, axis)) demon = torch.where(denom == 0, torch.tensor(EPSILON).to(denom.device), denom) axis = axis / torch.sqrt(demon) a = torch.cos(theta / 2.0) b, c, d = -axis[0] * torch.sin(theta / 2.0), -axis[1] * torch.sin(theta / 2.0), -axis[2] * torch.sin(theta / 2.0) aa, bb, cc, dd = a*a, b*b, c*c, d*d bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d return torch.stack([ torch.stack([aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)]), torch.stack([2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)]), torch.stack([2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc]) ]) else: return torch.eye(3) def normal_rotation_img2img_angle_axis(image, angle, axis=None, device='cuda'): """ Rotate an image by a given angle around a given axis using PyTorch. Args: image: Input Image to rotate. angle: Rotation angle in degrees. axis: Rotation axis as a array of 3 floats. Returns: Image: Rotated Image. """ if axis is None: axis = [0,1,0] axis = torch.tensor(axis, device=device) if type(image) == Image.Image: image_array = torch.tensor(np.array(image, dtype='float32')) else: image_array = image image_array = image_array.to(device) if type(angle) != torch.Tensor: angle = torch.tensor(angle) angle = angle.to(device) if image_array.shape[2] == 4: rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3] else: rgb_array = image_array alpha_array = None rgb_array = rgb_array / 255.0 - 0.5 rgb_array = rgb_array.permute(2, 0, 1) rotated_tensor = apply_rotation_angle_axis(rgb_array.unsqueeze(0), axis, torch.tensor([angle], device=rgb_array.device)) rotated_array = rotated_tensor.squeeze().permute(1, 2, 0) rotated_array = (rotated_array/2 + 0.5) * 255 if alpha_array is not None: rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2) rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8') rotated_normal = Image.fromarray(rotated_array_uint8) return rotated_normal def normal_rotation_img2img_c2w(image, c2w, device='cuda'): if type(image) != torch.Tensor: image_array = torch.tensor(np.array(image, dtype='float32')) else: image_array = image image_array = image_array.to(device) if image_array.shape[2] == 4: rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3] else: rgb_array = image_array alpha_array = None rgb_array = rgb_array / 255.0 - 0.5 rotation_matrix = c2w rotated_tensor = transform_normals_R(rgb_array, rotation_matrix) rotated_array = rotated_tensor.squeeze().permute(1, 2, 0) rotated_array = (rotated_array/2 + 0.5) * 255 if alpha_array is not None: rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2) rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8') rotated_normal = Image.fromarray(rotated_array_uint8) return rotated_normal def normal_rotation_img2img_azi_ele(image, azi, ele, device='cuda'): """ Rotate an image by a given angle around a given axis using PyTorch. Args: image: Input Image to rotate. Returns: Image: Rotated Image. """ if type(image) == Image.Image: image_array = torch.tensor(np.array(image, dtype='float32')) else: image_array = image image_array = image_array.to(device) if type(azi) != torch.Tensor: azi = torch.tensor(azi) azi = azi.to(device) if type(ele) != torch.Tensor: ele = torch.tensor(ele) ele = ele.to(device) if image_array.shape[2] == 4: rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3] else: rgb_array = image_array alpha_array = None rgb_array = rgb_array / 255.0 - 0.5 rotation_matrix = get_rotation_matrix_azi_ele(azi, ele) rotated_tensor = transform_normals_R(rgb_array, rotation_matrix) rotated_array = rotated_tensor.squeeze().permute(1, 2, 0) rotated_array = (rotated_array/2 + 0.5) * 255 if alpha_array is not None: rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2) rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8') rotated_normal = Image.fromarray(rotated_array_uint8) return rotated_normal def rotate_normal_R(image, rotation_matrix, save_addr="", device="cuda"): """ Rotate a normal map by a given Rotation matrix using PyTorch. Args: image: Input Image to rotate. Returns: Image: Rotated Image. """ if type(image) != torch.tensor: image_array = torch.tensor(np.array(image, dtype='float32')) else: image_array = image image_array = image_array.to(device) if image_array.shape[2] == 4: rgb_array, alpha_array = image_array[:, :, :3], image_array[:, :, 3] else: rgb_array = image_array alpha_array = None rgb_array = rgb_array / 255.0 - 0.5 rotated_tensor = transform_normals_R(rgb_array, rotation_matrix.to(device)) rotated_array = rotated_tensor.squeeze().permute(1, 2, 0) rotated_array = (rotated_array/2 + 0.5) * 255 if alpha_array is not None: rotated_array = torch.cat((rotated_array, alpha_array.unsqueeze(2)), dim=2) rotated_array_uint8 = np.array(rotated_array.detach().cpu()).astype('uint8') rotated_normal = Image.fromarray(rotated_array_uint8) if save_addr: rotated_normal.save(save_addr) return rotated_normal def transform_normals_R(local_normals, rotation_matrix): assert local_normals.shape[2] ==3 ,f'local_normals.shape[2]: {local_normals.shape[2]}. only support rgb image' h, w = local_normals.shape[:2] local_normals_flat = local_normals.view(-1, 3).permute(1, 0) images_flat = local_normals_flat.unsqueeze(0) rotation_matrices = rotation_matrix.unsqueeze(0) rotated_images_flat = torch.bmm(rotation_matrices, images_flat) rotated_images = rotated_images_flat.view(1, 3, h, w) norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True) norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms) normalized_images = rotated_images / norms return normalized_images def manage_elevation_azimuth(ele_list, azi_list): """deal with cases when elevation > 90""" for i in range(len(ele_list)): elevation = ele_list[i] % 360 azimuth = azi_list[i] % 360 if elevation > 90 and elevation<=270: # when elevation is too bigļ¼Œcamera gets to the other side # print(f'!!! elevation({elevation}) > 90 and <=270, set to 180-elevation, and add 180 to azimuth') elevation = 180 - elevation azimuth = azimuth + 180 # print(f'new elevation: {elevation}, new azimuth: {azimuth}') elif elevation>270: # print(f'!!! elevation({elevation}) > 270, set to elevation-360, and use original azimuth') elevation = elevation - 360 azimuth = azimuth # print(f'new elevation: {elevation}, new azimuth: {azimuth}') ele_list[i] = elevation azi_list[i] = azimuth return ele_list, azi_list def get_rotation_matrix_azi_ele(azimuth, elevation): ele = elevation/180 * torch.pi azi = azimuth/180 * torch.pi Rz = torch.tensor([ [torch.cos(azi), 0, -torch.sin(azi)], [0, 1, 0], [torch.sin(azi), 0, torch.cos(azi)], ]).to(azimuth.device) Re = torch.tensor([ [1, 0, 0], [0, torch.cos(ele), torch.sin(ele)], [0, -torch.sin(ele), torch.cos(ele)], ]).to(elevation.device) return torch.matmul(Rz,Re).to(azimuth.device) def rotate_vector(vector, axis, angle, device='cuda'): rot_matrix = rotation_matrix_axis_angle(axis, angle) return torch.matmul(vector.to(device).float(), rot_matrix.to(device).float()) def apply_rotation_angle_axis(image, axis, angle, device='cuda'): """Apply rotation to a batch of images with shape [batch_size, 3(rgb), h, w] using PyTorch. Args: image (torch.Tensor): Input RGB image tensor of shape [batch_size, 3, h, w]. each pixel's rgb channels refer to direction of normal (can be negative) axis (torch.Tensor): Rotation axis of shape [3]. angle (torch.Tensor): Rotation angles in degrees, of shape [batch_size]. Returns: torch.Tensor: Rotated image tensor of shape [batch_size, 3, h, w]. values between [-1., 1.] """ if not isinstance(image, torch.Tensor): image_tensor = torch.tensor(image).to(device) else: image_tensor = image.to(device) if not isinstance(axis, torch.Tensor): axis = torch.tensor(axis) axis = axis.to(device) if not isinstance(angle, torch.Tensor): angle = torch.tensor(angle) angle = angle.to(device) batch_size, channels, h, w = image_tensor.shape rot_matrix = rotation_matrix_axis_angle(axis, angle) rotation_matrices = rot_matrix.permute(2, 0, 1) batch_size, c, h, w = image_tensor.shape images_flat = image_tensor.view(batch_size, c, h * w) rotated_images_flat = torch.bmm(rotation_matrices, images_flat) rotated_images = rotated_images_flat.view(batch_size, c, h, w) norms = torch.norm(rotated_images, p=2, dim=1, keepdim=True) norms = torch.where(norms == 0, torch.tensor(EPSILON).to(norms.device), norms) normalized_images = rotated_images / norms return normalized_images