# modified from https://github.com/Profactor/continuous-remeshing import torch import numpy as np import trimesh from typing import Tuple from pytorch3d.renderer.cameras import camera_position_from_spherical_angles, look_at_rotation from pytorch3d.renderer import ( FoVOrthographicCameras, look_at_view_transform, ) def to_numpy(*args): def convert(a): if isinstance(a,torch.Tensor): return a.detach().cpu().numpy() assert a is None or isinstance(a,np.ndarray) return a return convert(args[0]) if len(args)==1 else tuple(convert(a) for a in args) def laplacian( num_verts:int, edges: torch.Tensor #E,2 ) -> torch.Tensor: #sparse V,V """create sparse Laplacian matrix""" V = num_verts E = edges.shape[0] #adjacency matrix, idx = torch.cat([edges, edges.fliplr()], dim=0).type(torch.long).T # (2, 2*E) ones = torch.ones(2*E, dtype=torch.float32, device=edges.device) A = torch.sparse.FloatTensor(idx, ones, (V, V)) #degree matrix deg = torch.sparse.sum(A, dim=1).to_dense() idx = torch.arange(V, device=edges.device) idx = torch.stack([idx, idx], dim=0) D = torch.sparse.FloatTensor(idx, deg, (V, V)) return D - A def _translation(x, y, z, device): return torch.tensor([[1., 0, 0, x], [0, 1, 0, y], [0, 0, 1, z], [0, 0, 0, 1]],device=device) #4,4 def _perspective(fovy, aspect=1.0, n=0.1, f=1000.0, device=None): fovy = fovy * torch.pi / 180 y = np.tan(fovy / 2) return torch.tensor([[1/(y*aspect), 0, 0, 0], [ 0, 1/-y, 0, 0], [ 0, 0, -(f+n)/(f-n), -(2*f*n)/(f-n)], [ 0, 0, -1, 0]], dtype=torch.float32, device=device) def _projection(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True): """ see https://blog.csdn.net/wodownload2/article/details/85069240/ """ if l is None: l = -r if t is None: t = r if b is None: b = -t p = torch.zeros([4,4],device=device) p[0,0] = 2*n/(r-l) p[0,2] = (r+l)/(r-l) p[1,1] = 2*n/(t-b) * (-1 if flip_y else 1) p[1,2] = (t+b)/(t-b) p[2,2] = -(f+n)/(f-n) p[2,3] = -(2*f*n)/(f-n) p[3,2] = -1 return p #4,4 def _orthographic(r, device, l=None, t=None, b=None, n=1.0, f=50.0, flip_y=True): if l is None: l = -r if t is None: t = r if b is None: b = -t o = torch.zeros([4,4],device=device) o[0,0] = 2/(r-l) o[0,3] = -(r+l)/(r-l) o[1,1] = 2/(t-b) * (-1 if flip_y else 1) o[1,3] = -(t+b)/(t-b) o[2,2] = -2/(f-n) o[2,3] = -(f+n)/(f-n) o[3,3] = 1 return o #4,4 def make_star_cameras_orig(phis,pol_count,distance:float=10.,r=None,image_size=[512,512],device='cuda'): if r is None: r = 1/distance A = len(phis) P = pol_count C = A * P # total number of cameras phi = phis * torch.pi / 180 phi_rot = torch.eye(3,device=device)[None,None].expand(A,1,3,3).clone() phi_rot[:,0,2,2] = phi.cos() phi_rot[:,0,2,0] = -phi.sin() phi_rot[:,0,0,2] = phi.sin() phi_rot[:,0,0,0] = phi.cos() theta = torch.arange(1,P+1) * (torch.pi/(P+1)) - torch.pi/2 theta_rot = torch.eye(3,device=device)[None,None].expand(1,P,3,3).clone() theta_rot[0,:,1,1] = theta.cos() theta_rot[0,:,1,2] = -theta.sin() theta_rot[0,:,2,1] = theta.sin() theta_rot[0,:,2,2] = theta.cos() mv = torch.empty((C,4,4), device=device) mv[:] = torch.eye(4, device=device) mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(C,3,3) mv_ = _translation(0, 0, -distance, device) @ mv return mv_, _projection(r,device) def make_star_cameras_mv_new(phis,eles,distance:float=10.,r=None,fov=None,image_size=[512,512],device='cuda',translation=True): import glm def sample_spherical(phi, theta, cam_radius): theta = torch.deg2rad(theta) phi = torch.deg2rad(phi) z = cam_radius * torch.cos(phi) * torch.sin(theta) x = cam_radius * torch.sin(phi) * torch.sin(theta) y = cam_radius * torch.cos(theta) return x, y, z all_mvs = [] for i in range(len(phis)): azimuth = - phis[i] + 1e-10 ele = - eles[i] + 1e-10 + 90 x, y, z = sample_spherical(azimuth, ele, distance) eye = glm.vec3(x, y, z) at = glm.vec3(0.0, 0.0, 0.0) up = glm.vec3(0.0, 1.0, 0.0) view_matrix = glm.lookAt(eye, at, up) all_mvs.append(torch.from_numpy(np.array(view_matrix)).cuda()) mv = torch.stack(all_mvs) return mv def make_star_cameras_mv(phis,eles,distance:float=10.,r=None,fov=None,image_size=[512,512],device='cuda',translation=True): if r is None: r = 0.15 A = len(phis) assert len(eles) == A, f'len(phis): {len(phis)}, len(eles): {len(eles)}' phi = phis * torch.pi / 180 phi_rot = torch.eye(3,device=device)[None].expand(A,3,3).clone() phi_rot[:,2,2] = phi.cos() phi_rot[:,2,0] = -phi.sin() phi_rot[:,0,2] = phi.sin() phi_rot[:,0,0] = phi.cos() theta = eles * torch.pi / 180 theta_rot = torch.eye(3,device=device)[None].expand(A,3,3).clone() theta_rot[:,1,1] = theta.cos() theta_rot[:,1,2] = -theta.sin() theta_rot[:,2,1] = theta.sin() theta_rot[:,2,2] = theta.cos() mv = torch.empty((A,4,4), device=device) mv[:] = torch.eye(4, device=device) mv[:,:3,:3] = (theta_rot @ phi_rot).reshape(A,3,3) if translation: mv_ = _translation(0, 0, -distance, device) @ mv else: mv_ = mv return mv_ def make_star_cameras(phis,eles,distance:float=10.,r=None,fov=None,image_size=[512,512],device='cuda',translation=True): mv_ = make_star_cameras_mv_new(phis, eles, distance, r, device=device, translation=translation) return mv_, _perspective(fov,device=device) def make_star_cameras_perspective(phis, eles, distance:float=10., r=None, fov=None, device='cuda'): return make_star_cameras(phis, eles, distance, r, fov=fov, device=device, translation=True) def make_star_cameras_orthographic(phis, eles, distance:float=10., r=None, device='cuda'): mv = make_star_cameras_mv_new(phis, eles, distance, r, device=device) if r is None: r = 1 return mv, _orthographic(r,device) def make_sphere(level:int=2,radius=1.,device='cuda') -> Tuple[torch.Tensor,torch.Tensor]: sphere = trimesh.creation.icosphere(subdivisions=level, radius=1.0, color=None) vertices = torch.tensor(sphere.vertices, device=device, dtype=torch.float32) * radius faces = torch.tensor(sphere.faces, device=device, dtype=torch.long) return vertices,faces def get_camera(R, T, focal_length=1 / (2**0.5)): focal_length = 1 / focal_length camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length) return camera def make_star_cameras_orthographic_py3d(azim_list, device, focal=2/1.35, dist=1.1): R, T = look_at_view_transform(dist, 0, azim_list) focal_length = 1 / focal return FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length).to(device) def rotation_matrix_to_euler_angles(R, return_degrees=True): sy = torch.sqrt(R[0, 0] * R[0, 0] + R[1, 0] * R[1, 0]) singular = sy < 1e-6 if not singular: x = torch.atan2(R[2, 1], R[2, 2]) y = torch.atan2(-R[2, 0], sy) z = torch.atan2(R[1, 0], R[0, 0]) else: x = torch.atan2(-R[1, 2], R[1, 1]) y = torch.atan2(-R[2, 0], sy) z = 0 if return_degrees: return torch.tensor([x, y, z]) * 180 / np.pi else: return torch.tensor([x, y, z])