import gradio as gr import numpy as np import os import random import spaces import torch from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" access_token = os.getenv("HUGGINGFACE_TOKEN") taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device) good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype, token=access_token).to(device) pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1, token=access_token).to(device) torch.cuda.empty_cache() MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe) @spaces.GPU(duration=75) def infer(prompt, seed=42, randomize_seed=False, width=2048, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images( prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, output_type="pil", good_vae=good_vae, ): # yield img, seed pass return img, seed examples = [ "a tiny astronaut hatching from an egg on the moon", "a cat holding a sign that says hello world", "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 520px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] 12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) [[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)] """) with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=15, step=0.1, value=3.5, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples( examples = examples, fn = infer, inputs = [prompt], outputs = [result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()