|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import unittest |
|
|
|
from diffusers import AutoencoderDC |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
torch_device, |
|
) |
|
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class AutoencoderDCTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): |
|
model_class = AutoencoderDC |
|
main_input_name = "sample" |
|
base_precision = 1e-2 |
|
|
|
def get_autoencoder_dc_config(self): |
|
return { |
|
"in_channels": 3, |
|
"latent_channels": 4, |
|
"attention_head_dim": 2, |
|
"encoder_block_types": ( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
"decoder_block_types": ( |
|
"ResBlock", |
|
"EfficientViTBlock", |
|
), |
|
"encoder_block_out_channels": (8, 8), |
|
"decoder_block_out_channels": (8, 8), |
|
"encoder_qkv_multiscales": ((), (5,)), |
|
"decoder_qkv_multiscales": ((), (5,)), |
|
"encoder_layers_per_block": (1, 1), |
|
"decoder_layers_per_block": [1, 1], |
|
"downsample_block_type": "conv", |
|
"upsample_block_type": "interpolate", |
|
"decoder_norm_types": "rms_norm", |
|
"decoder_act_fns": "silu", |
|
"scaling_factor": 0.41407, |
|
} |
|
|
|
@property |
|
def dummy_input(self): |
|
batch_size = 4 |
|
num_channels = 3 |
|
sizes = (32, 32) |
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) |
|
|
|
return {"sample": image} |
|
|
|
@property |
|
def input_shape(self): |
|
return (3, 32, 32) |
|
|
|
@property |
|
def output_shape(self): |
|
return (3, 32, 32) |
|
|
|
def prepare_init_args_and_inputs_for_common(self): |
|
init_dict = self.get_autoencoder_dc_config() |
|
inputs_dict = self.dummy_input |
|
return init_dict, inputs_dict |
|
|
|
@unittest.skip("AutoencoderDC does not support `norm_num_groups` because it does not use GroupNorm.") |
|
def test_forward_with_norm_groups(self): |
|
pass |
|
|