|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..configuration_utils import ConfigMixin, register_to_config |
|
from .scheduling_dpmsolver_sde import BrownianTreeNoiseSampler |
|
from .scheduling_utils import SchedulerMixin, SchedulerOutput |
|
|
|
|
|
class CosineDPMSolverMultistepScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Implements a variant of `DPMSolverMultistepScheduler` with cosine schedule, proposed by Nichol and Dhariwal (2021). |
|
This scheduler was used in Stable Audio Open [1]. |
|
|
|
[1] Evans, Parker, et al. "Stable Audio Open" https://arxiv.org/abs/2407.14358 |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
sigma_min (`float`, *optional*, defaults to 0.3): |
|
Minimum noise magnitude in the sigma schedule. This was set to 0.3 in Stable Audio Open [1]. |
|
sigma_max (`float`, *optional*, defaults to 500): |
|
Maximum noise magnitude in the sigma schedule. This was set to 500 in Stable Audio Open [1]. |
|
sigma_data (`float`, *optional*, defaults to 1.0): |
|
The standard deviation of the data distribution. This is set to 1.0 in Stable Audio Open [1]. |
|
sigma_schedule (`str`, *optional*, defaults to `exponential`): |
|
Sigma schedule to compute the `sigmas`. By default, we the schedule introduced in the EDM paper |
|
(https://arxiv.org/abs/2206.00364). Other acceptable value is "exponential". The exponential schedule was |
|
incorporated in this model: https://huggingface.co/stabilityai/cosxl. |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
solver_order (`int`, defaults to 2): |
|
The DPMSolver order which can be `1` or `2`. It is recommended to use `solver_order=2`. |
|
prediction_type (`str`, defaults to `v_prediction`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
solver_type (`str`, defaults to `midpoint`): |
|
Solver type for the second-order solver; can be `midpoint` or `heun`. The solver type slightly affects the |
|
sample quality, especially for a small number of steps. It is recommended to use `midpoint` solvers. |
|
lower_order_final (`bool`, defaults to `True`): |
|
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can |
|
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10. |
|
euler_at_final (`bool`, defaults to `False`): |
|
Whether to use Euler's method in the final step. It is a trade-off between numerical stability and detail |
|
richness. This can stabilize the sampling of the SDE variant of DPMSolver for small number of inference |
|
steps, but sometimes may result in blurring. |
|
final_sigmas_type (`str`, defaults to `"zero"`): |
|
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final |
|
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0. |
|
""" |
|
|
|
_compatibles = [] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sigma_min: float = 0.3, |
|
sigma_max: float = 500, |
|
sigma_data: float = 1.0, |
|
sigma_schedule: str = "exponential", |
|
num_train_timesteps: int = 1000, |
|
solver_order: int = 2, |
|
prediction_type: str = "v_prediction", |
|
rho: float = 7.0, |
|
solver_type: str = "midpoint", |
|
lower_order_final: bool = True, |
|
euler_at_final: bool = False, |
|
final_sigmas_type: Optional[str] = "zero", |
|
): |
|
if solver_type not in ["midpoint", "heun"]: |
|
if solver_type in ["logrho", "bh1", "bh2"]: |
|
self.register_to_config(solver_type="midpoint") |
|
else: |
|
raise NotImplementedError(f"{solver_type} is not implemented for {self.__class__}") |
|
|
|
ramp = torch.linspace(0, 1, num_train_timesteps) |
|
if sigma_schedule == "karras": |
|
sigmas = self._compute_karras_sigmas(ramp) |
|
elif sigma_schedule == "exponential": |
|
sigmas = self._compute_exponential_sigmas(ramp) |
|
|
|
self.timesteps = self.precondition_noise(sigmas) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
|
|
self.num_inference_steps = None |
|
self.model_outputs = [None] * solver_order |
|
self.lower_order_nums = 0 |
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
|
|
return (self.config.sigma_max**2 + 1) ** 0.5 |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increase 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
@property |
|
def begin_index(self): |
|
""" |
|
The index for the first timestep. It should be set from pipeline with `set_begin_index` method. |
|
""" |
|
return self._begin_index |
|
|
|
|
|
def set_begin_index(self, begin_index: int = 0): |
|
""" |
|
Sets the begin index for the scheduler. This function should be run from pipeline before the inference. |
|
|
|
Args: |
|
begin_index (`int`): |
|
The begin index for the scheduler. |
|
""" |
|
self._begin_index = begin_index |
|
|
|
|
|
def precondition_inputs(self, sample, sigma): |
|
c_in = 1 / ((sigma**2 + self.config.sigma_data**2) ** 0.5) |
|
scaled_sample = sample * c_in |
|
return scaled_sample |
|
|
|
def precondition_noise(self, sigma): |
|
if not isinstance(sigma, torch.Tensor): |
|
sigma = torch.tensor([sigma]) |
|
|
|
return sigma.atan() / math.pi * 2 |
|
|
|
|
|
def precondition_outputs(self, sample, model_output, sigma): |
|
sigma_data = self.config.sigma_data |
|
c_skip = sigma_data**2 / (sigma**2 + sigma_data**2) |
|
|
|
if self.config.prediction_type == "epsilon": |
|
c_out = sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
elif self.config.prediction_type == "v_prediction": |
|
c_out = -sigma * sigma_data / (sigma**2 + sigma_data**2) ** 0.5 |
|
else: |
|
raise ValueError(f"Prediction type {self.config.prediction_type} is not supported.") |
|
|
|
denoised = c_skip * sample + c_out * model_output |
|
|
|
return denoised |
|
|
|
|
|
def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
sample (`torch.Tensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
A scaled input sample. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sample = self.precondition_inputs(sample, sigma) |
|
|
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int = None, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
|
|
self.num_inference_steps = num_inference_steps |
|
|
|
ramp = torch.linspace(0, 1, self.num_inference_steps) |
|
if self.config.sigma_schedule == "karras": |
|
sigmas = self._compute_karras_sigmas(ramp) |
|
elif self.config.sigma_schedule == "exponential": |
|
sigmas = self._compute_exponential_sigmas(ramp) |
|
|
|
sigmas = sigmas.to(dtype=torch.float32, device=device) |
|
self.timesteps = self.precondition_noise(sigmas) |
|
|
|
if self.config.final_sigmas_type == "sigma_min": |
|
sigma_last = self.config.sigma_min |
|
elif self.config.final_sigmas_type == "zero": |
|
sigma_last = 0 |
|
else: |
|
raise ValueError( |
|
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}" |
|
) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.tensor([sigma_last], dtype=torch.float32, device=device)]) |
|
|
|
self.model_outputs = [ |
|
None, |
|
] * self.config.solver_order |
|
self.lower_order_nums = 0 |
|
|
|
|
|
self._step_index = None |
|
self._begin_index = None |
|
self.sigmas = self.sigmas.to("cpu") |
|
|
|
|
|
self.noise_sampler = None |
|
|
|
|
|
def _compute_karras_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
sigma_min = sigma_min or self.config.sigma_min |
|
sigma_max = sigma_max or self.config.sigma_max |
|
|
|
rho = self.config.rho |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
|
|
def _compute_exponential_sigmas(self, ramp, sigma_min=None, sigma_max=None) -> torch.Tensor: |
|
"""Implementation closely follows k-diffusion. |
|
|
|
https://github.com/crowsonkb/k-diffusion/blob/6ab5146d4a5ef63901326489f31f1d8e7dd36b48/k_diffusion/sampling.py#L26 |
|
""" |
|
sigma_min = sigma_min or self.config.sigma_min |
|
sigma_max = sigma_max or self.config.sigma_max |
|
sigmas = torch.linspace(math.log(sigma_min), math.log(sigma_max), len(ramp)).exp().flip(0) |
|
return sigmas |
|
|
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(np.maximum(sigma, 1e-10)) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
def _sigma_to_alpha_sigma_t(self, sigma): |
|
alpha_t = torch.tensor(1) |
|
sigma_t = sigma |
|
|
|
return alpha_t, sigma_t |
|
|
|
def convert_model_output( |
|
self, |
|
model_output: torch.Tensor, |
|
sample: torch.Tensor = None, |
|
) -> torch.Tensor: |
|
""" |
|
Convert the model output to the corresponding type the DPMSolver/DPMSolver++ algorithm needs. DPM-Solver is |
|
designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to discretize an |
|
integral of the data prediction model. |
|
|
|
<Tip> |
|
|
|
The algorithm and model type are decoupled. You can use either DPMSolver or DPMSolver++ for both noise |
|
prediction and data prediction models. |
|
|
|
</Tip> |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The converted model output. |
|
""" |
|
sigma = self.sigmas[self.step_index] |
|
x0_pred = self.precondition_outputs(sample, model_output, sigma) |
|
|
|
return x0_pred |
|
|
|
def dpm_solver_first_order_update( |
|
self, |
|
model_output: torch.Tensor, |
|
sample: torch.Tensor = None, |
|
noise: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the first-order DPMSolver (equivalent to DDIM). |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from the learned diffusion model. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
sigma_t, sigma_s = self.sigmas[self.step_index + 1], self.sigmas[self.step_index] |
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s, sigma_s = self._sigma_to_alpha_sigma_t(sigma_s) |
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s = torch.log(alpha_s) - torch.log(sigma_s) |
|
|
|
h = lambda_t - lambda_s |
|
assert noise is not None |
|
x_t = ( |
|
(sigma_t / sigma_s * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * model_output |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
|
|
return x_t |
|
|
|
def multistep_dpm_solver_second_order_update( |
|
self, |
|
model_output_list: List[torch.Tensor], |
|
sample: torch.Tensor = None, |
|
noise: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
""" |
|
One step for the second-order multistep DPMSolver. |
|
|
|
Args: |
|
model_output_list (`List[torch.Tensor]`): |
|
The direct outputs from learned diffusion model at current and latter timesteps. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
|
|
Returns: |
|
`torch.Tensor`: |
|
The sample tensor at the previous timestep. |
|
""" |
|
sigma_t, sigma_s0, sigma_s1 = ( |
|
self.sigmas[self.step_index + 1], |
|
self.sigmas[self.step_index], |
|
self.sigmas[self.step_index - 1], |
|
) |
|
|
|
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t) |
|
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0) |
|
alpha_s1, sigma_s1 = self._sigma_to_alpha_sigma_t(sigma_s1) |
|
|
|
lambda_t = torch.log(alpha_t) - torch.log(sigma_t) |
|
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0) |
|
lambda_s1 = torch.log(alpha_s1) - torch.log(sigma_s1) |
|
|
|
m0, m1 = model_output_list[-1], model_output_list[-2] |
|
|
|
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 |
|
r0 = h_0 / h |
|
D0, D1 = m0, (1.0 / r0) * (m0 - m1) |
|
|
|
|
|
assert noise is not None |
|
if self.config.solver_type == "midpoint": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ 0.5 * (alpha_t * (1 - torch.exp(-2.0 * h))) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
elif self.config.solver_type == "heun": |
|
x_t = ( |
|
(sigma_t / sigma_s0 * torch.exp(-h)) * sample |
|
+ (alpha_t * (1 - torch.exp(-2.0 * h))) * D0 |
|
+ (alpha_t * ((1.0 - torch.exp(-2.0 * h)) / (-2.0 * h) + 1.0)) * D1 |
|
+ sigma_t * torch.sqrt(1.0 - torch.exp(-2 * h)) * noise |
|
) |
|
|
|
return x_t |
|
|
|
|
|
def index_for_timestep(self, timestep, schedule_timesteps=None): |
|
if schedule_timesteps is None: |
|
schedule_timesteps = self.timesteps |
|
|
|
index_candidates = (schedule_timesteps == timestep).nonzero() |
|
|
|
if len(index_candidates) == 0: |
|
step_index = len(self.timesteps) - 1 |
|
|
|
|
|
|
|
|
|
elif len(index_candidates) > 1: |
|
step_index = index_candidates[1].item() |
|
else: |
|
step_index = index_candidates[0].item() |
|
|
|
return step_index |
|
|
|
|
|
def _init_step_index(self, timestep): |
|
""" |
|
Initialize the step_index counter for the scheduler. |
|
""" |
|
|
|
if self.begin_index is None: |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
self._step_index = self.index_for_timestep(timestep) |
|
else: |
|
self._step_index = self._begin_index |
|
|
|
def step( |
|
self, |
|
model_output: torch.Tensor, |
|
timestep: Union[int, torch.Tensor], |
|
sample: torch.Tensor, |
|
generator=None, |
|
return_dict: bool = True, |
|
) -> Union[SchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with |
|
the multistep DPMSolver. |
|
|
|
Args: |
|
model_output (`torch.Tensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`int`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.Tensor`): |
|
A current instance of a sample created by the diffusion process. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a |
|
tuple is returned where the first element is the sample tensor. |
|
|
|
""" |
|
if self.num_inference_steps is None: |
|
raise ValueError( |
|
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
lower_order_final = (self.step_index == len(self.timesteps) - 1) and ( |
|
self.config.euler_at_final |
|
or (self.config.lower_order_final and len(self.timesteps) < 15) |
|
or self.config.final_sigmas_type == "zero" |
|
) |
|
lower_order_second = ( |
|
(self.step_index == len(self.timesteps) - 2) and self.config.lower_order_final and len(self.timesteps) < 15 |
|
) |
|
|
|
model_output = self.convert_model_output(model_output, sample=sample) |
|
for i in range(self.config.solver_order - 1): |
|
self.model_outputs[i] = self.model_outputs[i + 1] |
|
self.model_outputs[-1] = model_output |
|
|
|
if self.noise_sampler is None: |
|
seed = None |
|
if generator is not None: |
|
seed = ( |
|
[g.initial_seed() for g in generator] if isinstance(generator, list) else generator.initial_seed() |
|
) |
|
self.noise_sampler = BrownianTreeNoiseSampler( |
|
model_output, sigma_min=self.config.sigma_min, sigma_max=self.config.sigma_max, seed=seed |
|
) |
|
noise = self.noise_sampler(self.sigmas[self.step_index], self.sigmas[self.step_index + 1]).to( |
|
model_output.device |
|
) |
|
|
|
if self.config.solver_order == 1 or self.lower_order_nums < 1 or lower_order_final: |
|
prev_sample = self.dpm_solver_first_order_update(model_output, sample=sample, noise=noise) |
|
elif self.config.solver_order == 2 or self.lower_order_nums < 2 or lower_order_second: |
|
prev_sample = self.multistep_dpm_solver_second_order_update(self.model_outputs, sample=sample, noise=noise) |
|
|
|
if self.lower_order_nums < self.config.solver_order: |
|
self.lower_order_nums += 1 |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return SchedulerOutput(prev_sample=prev_sample) |
|
|
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.Tensor, |
|
noise: torch.Tensor, |
|
timesteps: torch.Tensor, |
|
) -> torch.Tensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
|
|
if self.begin_index is None: |
|
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps] |
|
elif self.step_index is not None: |
|
|
|
step_indices = [self.step_index] * timesteps.shape[0] |
|
else: |
|
|
|
step_indices = [self.begin_index] * timesteps.shape[0] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|