|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Adapted from |
|
https://github.com/huggingface/transformers/blob/52cb4034ada381fe1ffe8d428a1076e5411a8026/src/transformers/quantizers/base.py |
|
""" |
|
|
|
from abc import ABC, abstractmethod |
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union |
|
|
|
from ..utils import is_torch_available |
|
from .quantization_config import QuantizationConfigMixin |
|
|
|
|
|
if TYPE_CHECKING: |
|
from ..models.modeling_utils import ModelMixin |
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
|
|
class DiffusersQuantizer(ABC): |
|
""" |
|
Abstract class of the HuggingFace quantizer. Supports for now quantizing HF diffusers models for inference and/or |
|
quantization. This class is used only for diffusers.models.modeling_utils.ModelMixin.from_pretrained and cannot be |
|
easily used outside the scope of that method yet. |
|
|
|
Attributes |
|
quantization_config (`diffusers.quantizers.quantization_config.QuantizationConfigMixin`): |
|
The quantization config that defines the quantization parameters of your model that you want to quantize. |
|
modules_to_not_convert (`List[str]`, *optional*): |
|
The list of module names to not convert when quantizing the model. |
|
required_packages (`List[str]`, *optional*): |
|
The list of required pip packages to install prior to using the quantizer |
|
requires_calibration (`bool`): |
|
Whether the quantization method requires to calibrate the model before using it. |
|
""" |
|
|
|
requires_calibration = False |
|
required_packages = None |
|
|
|
def __init__(self, quantization_config: QuantizationConfigMixin, **kwargs): |
|
self.quantization_config = quantization_config |
|
|
|
|
|
self.modules_to_not_convert = kwargs.pop("modules_to_not_convert", []) |
|
self.pre_quantized = kwargs.pop("pre_quantized", True) |
|
|
|
if not self.pre_quantized and self.requires_calibration: |
|
raise ValueError( |
|
f"The quantization method {quantization_config.quant_method} does require the model to be pre-quantized." |
|
f" You explicitly passed `pre_quantized=False` meaning your model weights are not quantized. Make sure to " |
|
f"pass `pre_quantized=True` while knowing what you are doing." |
|
) |
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
""" |
|
Some quantization methods require to explicitly set the dtype of the model to a target dtype. You need to |
|
override this method in case you want to make sure that behavior is preserved |
|
|
|
Args: |
|
torch_dtype (`torch.dtype`): |
|
The input dtype that is passed in `from_pretrained` |
|
""" |
|
return torch_dtype |
|
|
|
def update_device_map(self, device_map: Optional[Dict[str, Any]]) -> Optional[Dict[str, Any]]: |
|
""" |
|
Override this method if you want to pass a override the existing device map with a new one. E.g. for |
|
bitsandbytes, since `accelerate` is a hard requirement, if no device_map is passed, the device_map is set to |
|
`"auto"`` |
|
|
|
Args: |
|
device_map (`Union[dict, str]`, *optional*): |
|
The device_map that is passed through the `from_pretrained` method. |
|
""" |
|
return device_map |
|
|
|
def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": |
|
""" |
|
Override this method if you want to adjust the `target_dtype` variable used in `from_pretrained` to compute the |
|
device_map in case the device_map is a `str`. E.g. for bitsandbytes we force-set `target_dtype` to `torch.int8` |
|
and for 4-bit we pass a custom enum `accelerate.CustomDtype.int4`. |
|
|
|
Args: |
|
torch_dtype (`torch.dtype`, *optional*): |
|
The torch_dtype that is used to compute the device_map. |
|
""" |
|
return torch_dtype |
|
|
|
def update_missing_keys(self, model, missing_keys: List[str], prefix: str) -> List[str]: |
|
""" |
|
Override this method if you want to adjust the `missing_keys`. |
|
|
|
Args: |
|
missing_keys (`List[str]`, *optional*): |
|
The list of missing keys in the checkpoint compared to the state dict of the model |
|
""" |
|
return missing_keys |
|
|
|
def get_special_dtypes_update(self, model, torch_dtype: "torch.dtype") -> Dict[str, "torch.dtype"]: |
|
""" |
|
returns dtypes for modules that are not quantized - used for the computation of the device_map in case one |
|
passes a str as a device_map. The method will use the `modules_to_not_convert` that is modified in |
|
`_process_model_before_weight_loading`. `diffusers` models don't have any `modules_to_not_convert` attributes |
|
yet but this can change soon in the future. |
|
|
|
Args: |
|
model (`~diffusers.models.modeling_utils.ModelMixin`): |
|
The model to quantize |
|
torch_dtype (`torch.dtype`): |
|
The dtype passed in `from_pretrained` method. |
|
""" |
|
|
|
return { |
|
name: torch_dtype |
|
for name, _ in model.named_parameters() |
|
if any(m in name for m in self.modules_to_not_convert) |
|
} |
|
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]: |
|
"""adjust max_memory argument for infer_auto_device_map() if extra memory is needed for quantization""" |
|
return max_memory |
|
|
|
def check_if_quantized_param( |
|
self, |
|
model: "ModelMixin", |
|
param_value: "torch.Tensor", |
|
param_name: str, |
|
state_dict: Dict[str, Any], |
|
**kwargs, |
|
) -> bool: |
|
""" |
|
checks if a loaded state_dict component is part of quantized param + some validation; only defined for |
|
quantization methods that require to create a new parameters for quantization. |
|
""" |
|
return False |
|
|
|
def create_quantized_param(self, *args, **kwargs) -> "torch.nn.Parameter": |
|
""" |
|
takes needed components from state_dict and creates quantized param. |
|
""" |
|
return |
|
|
|
def check_quantized_param_shape(self, *args, **kwargs): |
|
""" |
|
checks if the quantized param has expected shape. |
|
""" |
|
return True |
|
|
|
def validate_environment(self, *args, **kwargs): |
|
""" |
|
This method is used to potentially check for potential conflicts with arguments that are passed in |
|
`from_pretrained`. You need to define it for all future quantizers that are integrated with diffusers. If no |
|
explicit check are needed, simply return nothing. |
|
""" |
|
return |
|
|
|
def preprocess_model(self, model: "ModelMixin", **kwargs): |
|
""" |
|
Setting model attributes and/or converting model before weights loading. At this point the model should be |
|
initialized on the meta device so you can freely manipulate the skeleton of the model in order to replace |
|
modules in-place. Make sure to override the abstract method `_process_model_before_weight_loading`. |
|
|
|
Args: |
|
model (`~diffusers.models.modeling_utils.ModelMixin`): |
|
The model to quantize |
|
kwargs (`dict`, *optional*): |
|
The keyword arguments that are passed along `_process_model_before_weight_loading`. |
|
""" |
|
model.is_quantized = True |
|
model.quantization_method = self.quantization_config.quant_method |
|
return self._process_model_before_weight_loading(model, **kwargs) |
|
|
|
def postprocess_model(self, model: "ModelMixin", **kwargs): |
|
""" |
|
Post-process the model post weights loading. Make sure to override the abstract method |
|
`_process_model_after_weight_loading`. |
|
|
|
Args: |
|
model (`~diffusers.models.modeling_utils.ModelMixin`): |
|
The model to quantize |
|
kwargs (`dict`, *optional*): |
|
The keyword arguments that are passed along `_process_model_after_weight_loading`. |
|
""" |
|
return self._process_model_after_weight_loading(model, **kwargs) |
|
|
|
def dequantize(self, model): |
|
""" |
|
Potentially dequantize the model to retrive the original model, with some loss in accuracy / performance. Note |
|
not all quantization schemes support this. |
|
""" |
|
model = self._dequantize(model) |
|
|
|
|
|
del model.hf_quantizer |
|
|
|
return model |
|
|
|
def _dequantize(self, model): |
|
raise NotImplementedError( |
|
f"{self.quantization_config.quant_method} has no implementation of `dequantize`, please raise an issue on GitHub." |
|
) |
|
|
|
@abstractmethod |
|
def _process_model_before_weight_loading(self, model, **kwargs): |
|
... |
|
|
|
@abstractmethod |
|
def _process_model_after_weight_loading(self, model, **kwargs): |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def is_serializable(self): |
|
... |
|
|
|
@property |
|
@abstractmethod |
|
def is_trainable(self): |
|
... |
|
|