|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils import logging |
|
from ..attention import LuminaFeedForward |
|
from ..attention_processor import Attention, LuminaAttnProcessor2_0 |
|
from ..embeddings import ( |
|
LuminaCombinedTimestepCaptionEmbedding, |
|
LuminaPatchEmbed, |
|
) |
|
from ..modeling_outputs import Transformer2DModelOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..normalization import LuminaLayerNormContinuous, LuminaRMSNormZero, RMSNorm |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class LuminaNextDiTBlock(nn.Module): |
|
""" |
|
A LuminaNextDiTBlock for LuminaNextDiT2DModel. |
|
|
|
Parameters: |
|
dim (`int`): Embedding dimension of the input features. |
|
num_attention_heads (`int`): Number of attention heads. |
|
num_kv_heads (`int`): |
|
Number of attention heads in key and value features (if using GQA), or set to None for the same as query. |
|
multiple_of (`int`): The number of multiple of ffn layer. |
|
ffn_dim_multiplier (`float`): The multipier factor of ffn layer dimension. |
|
norm_eps (`float`): The eps for norm layer. |
|
qk_norm (`bool`): normalization for query and key. |
|
cross_attention_dim (`int`): Cross attention embedding dimension of the input text prompt hidden_states. |
|
norm_elementwise_affine (`bool`, *optional*, defaults to True), |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
num_kv_heads: int, |
|
multiple_of: int, |
|
ffn_dim_multiplier: float, |
|
norm_eps: float, |
|
qk_norm: bool, |
|
cross_attention_dim: int, |
|
norm_elementwise_affine: bool = True, |
|
) -> None: |
|
super().__init__() |
|
self.head_dim = dim // num_attention_heads |
|
|
|
self.gate = nn.Parameter(torch.zeros([num_attention_heads])) |
|
|
|
|
|
self.attn1 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=None, |
|
dim_head=dim // num_attention_heads, |
|
qk_norm="layer_norm_across_heads" if qk_norm else None, |
|
heads=num_attention_heads, |
|
kv_heads=num_kv_heads, |
|
eps=1e-5, |
|
bias=False, |
|
out_bias=False, |
|
processor=LuminaAttnProcessor2_0(), |
|
) |
|
self.attn1.to_out = nn.Identity() |
|
|
|
|
|
self.attn2 = Attention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
dim_head=dim // num_attention_heads, |
|
qk_norm="layer_norm_across_heads" if qk_norm else None, |
|
heads=num_attention_heads, |
|
kv_heads=num_kv_heads, |
|
eps=1e-5, |
|
bias=False, |
|
out_bias=False, |
|
processor=LuminaAttnProcessor2_0(), |
|
) |
|
|
|
self.feed_forward = LuminaFeedForward( |
|
dim=dim, |
|
inner_dim=4 * dim, |
|
multiple_of=multiple_of, |
|
ffn_dim_multiplier=ffn_dim_multiplier, |
|
) |
|
|
|
self.norm1 = LuminaRMSNormZero( |
|
embedding_dim=dim, |
|
norm_eps=norm_eps, |
|
norm_elementwise_affine=norm_elementwise_affine, |
|
) |
|
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
|
|
self.norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
|
|
self.norm1_context = RMSNorm(cross_attention_dim, eps=norm_eps, elementwise_affine=norm_elementwise_affine) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
image_rotary_emb: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_mask: torch.Tensor, |
|
temb: torch.Tensor, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
): |
|
""" |
|
Perform a forward pass through the LuminaNextDiTBlock. |
|
|
|
Parameters: |
|
hidden_states (`torch.Tensor`): The input of hidden_states for LuminaNextDiTBlock. |
|
attention_mask (`torch.Tensor): The input of hidden_states corresponse attention mask. |
|
image_rotary_emb (`torch.Tensor`): Precomputed cosine and sine frequencies. |
|
encoder_hidden_states: (`torch.Tensor`): The hidden_states of text prompt are processed by Gemma encoder. |
|
encoder_mask (`torch.Tensor`): The hidden_states of text prompt attention mask. |
|
temb (`torch.Tensor`): Timestep embedding with text prompt embedding. |
|
cross_attention_kwargs (`Dict[str, Any]`): kwargs for cross attention. |
|
""" |
|
residual = hidden_states |
|
|
|
|
|
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb) |
|
self_attn_output = self.attn1( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_hidden_states, |
|
attention_mask=attention_mask, |
|
query_rotary_emb=image_rotary_emb, |
|
key_rotary_emb=image_rotary_emb, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
|
|
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states) |
|
cross_attn_output = self.attn2( |
|
hidden_states=norm_hidden_states, |
|
encoder_hidden_states=norm_encoder_hidden_states, |
|
attention_mask=encoder_mask, |
|
query_rotary_emb=image_rotary_emb, |
|
key_rotary_emb=None, |
|
**cross_attention_kwargs, |
|
) |
|
cross_attn_output = cross_attn_output * self.gate.tanh().view(1, 1, -1, 1) |
|
mixed_attn_output = self_attn_output + cross_attn_output |
|
mixed_attn_output = mixed_attn_output.flatten(-2) |
|
|
|
hidden_states = self.attn2.to_out[0](mixed_attn_output) |
|
|
|
hidden_states = residual + gate_msa.unsqueeze(1).tanh() * self.norm2(hidden_states) |
|
|
|
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1))) |
|
|
|
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output) |
|
|
|
return hidden_states |
|
|
|
|
|
class LuminaNextDiT2DModel(ModelMixin, ConfigMixin): |
|
""" |
|
LuminaNextDiT: Diffusion model with a Transformer backbone. |
|
|
|
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. |
|
|
|
Parameters: |
|
sample_size (`int`): The width of the latent images. This is fixed during training since |
|
it is used to learn a number of position embeddings. |
|
patch_size (`int`, *optional*, (`int`, *optional*, defaults to 2): |
|
The size of each patch in the image. This parameter defines the resolution of patches fed into the model. |
|
in_channels (`int`, *optional*, defaults to 4): |
|
The number of input channels for the model. Typically, this matches the number of channels in the input |
|
images. |
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's |
|
hidden representations. |
|
num_layers (`int`, *optional*, default to 32): |
|
The number of layers in the model. This defines the depth of the neural network. |
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
The number of attention heads in each attention layer. This parameter specifies how many separate attention |
|
mechanisms are used. |
|
num_kv_heads (`int`, *optional*, defaults to 8): |
|
The number of key-value heads in the attention mechanism, if different from the number of attention heads. |
|
If None, it defaults to num_attention_heads. |
|
multiple_of (`int`, *optional*, defaults to 256): |
|
A factor that the hidden size should be a multiple of. This can help optimize certain hardware |
|
configurations. |
|
ffn_dim_multiplier (`float`, *optional*): |
|
A multiplier for the dimensionality of the feed-forward network. If None, it uses a default value based on |
|
the model configuration. |
|
norm_eps (`float`, *optional*, defaults to 1e-5): |
|
A small value added to the denominator for numerical stability in normalization layers. |
|
learn_sigma (`bool`, *optional*, defaults to True): |
|
Whether the model should learn the sigma parameter, which might be related to uncertainty or variance in |
|
predictions. |
|
qk_norm (`bool`, *optional*, defaults to True): |
|
Indicates if the queries and keys in the attention mechanism should be normalized. |
|
cross_attention_dim (`int`, *optional*, defaults to 2048): |
|
The dimensionality of the text embeddings. This parameter defines the size of the text representations used |
|
in the model. |
|
scaling_factor (`float`, *optional*, defaults to 1.0): |
|
A scaling factor applied to certain parameters or layers in the model. This can be used for adjusting the |
|
overall scale of the model's operations. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: int = 128, |
|
patch_size: Optional[int] = 2, |
|
in_channels: Optional[int] = 4, |
|
hidden_size: Optional[int] = 2304, |
|
num_layers: Optional[int] = 32, |
|
num_attention_heads: Optional[int] = 32, |
|
num_kv_heads: Optional[int] = None, |
|
multiple_of: Optional[int] = 256, |
|
ffn_dim_multiplier: Optional[float] = None, |
|
norm_eps: Optional[float] = 1e-5, |
|
learn_sigma: Optional[bool] = True, |
|
qk_norm: Optional[bool] = True, |
|
cross_attention_dim: Optional[int] = 2048, |
|
scaling_factor: Optional[float] = 1.0, |
|
) -> None: |
|
super().__init__() |
|
self.sample_size = sample_size |
|
self.patch_size = patch_size |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels * 2 if learn_sigma else in_channels |
|
self.hidden_size = hidden_size |
|
self.num_attention_heads = num_attention_heads |
|
self.head_dim = hidden_size // num_attention_heads |
|
self.scaling_factor = scaling_factor |
|
|
|
self.patch_embedder = LuminaPatchEmbed( |
|
patch_size=patch_size, in_channels=in_channels, embed_dim=hidden_size, bias=True |
|
) |
|
|
|
self.pad_token = nn.Parameter(torch.empty(hidden_size)) |
|
|
|
self.time_caption_embed = LuminaCombinedTimestepCaptionEmbedding( |
|
hidden_size=min(hidden_size, 1024), cross_attention_dim=cross_attention_dim |
|
) |
|
|
|
self.layers = nn.ModuleList( |
|
[ |
|
LuminaNextDiTBlock( |
|
hidden_size, |
|
num_attention_heads, |
|
num_kv_heads, |
|
multiple_of, |
|
ffn_dim_multiplier, |
|
norm_eps, |
|
qk_norm, |
|
cross_attention_dim, |
|
) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
self.norm_out = LuminaLayerNormContinuous( |
|
embedding_dim=hidden_size, |
|
conditioning_embedding_dim=min(hidden_size, 1024), |
|
elementwise_affine=False, |
|
eps=1e-6, |
|
bias=True, |
|
out_dim=patch_size * patch_size * self.out_channels, |
|
) |
|
|
|
|
|
assert (hidden_size // num_attention_heads) % 4 == 0, "2d rope needs head dim to be divisible by 4" |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
timestep: torch.Tensor, |
|
encoder_hidden_states: torch.Tensor, |
|
encoder_mask: torch.Tensor, |
|
image_rotary_emb: torch.Tensor, |
|
cross_attention_kwargs: Dict[str, Any] = None, |
|
return_dict=True, |
|
) -> torch.Tensor: |
|
""" |
|
Forward pass of LuminaNextDiT. |
|
|
|
Parameters: |
|
hidden_states (torch.Tensor): Input tensor of shape (N, C, H, W). |
|
timestep (torch.Tensor): Tensor of diffusion timesteps of shape (N,). |
|
encoder_hidden_states (torch.Tensor): Tensor of caption features of shape (N, D). |
|
encoder_mask (torch.Tensor): Tensor of caption masks of shape (N, L). |
|
""" |
|
hidden_states, mask, img_size, image_rotary_emb = self.patch_embedder(hidden_states, image_rotary_emb) |
|
image_rotary_emb = image_rotary_emb.to(hidden_states.device) |
|
|
|
temb = self.time_caption_embed(timestep, encoder_hidden_states, encoder_mask) |
|
|
|
encoder_mask = encoder_mask.bool() |
|
for layer in self.layers: |
|
hidden_states = layer( |
|
hidden_states, |
|
mask, |
|
image_rotary_emb, |
|
encoder_hidden_states, |
|
encoder_mask, |
|
temb=temb, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
) |
|
|
|
hidden_states = self.norm_out(hidden_states, temb) |
|
|
|
|
|
height_tokens = width_tokens = self.patch_size |
|
height, width = img_size[0] |
|
batch_size = hidden_states.size(0) |
|
sequence_length = (height // height_tokens) * (width // width_tokens) |
|
hidden_states = hidden_states[:, :sequence_length].view( |
|
batch_size, height // height_tokens, width // width_tokens, height_tokens, width_tokens, self.out_channels |
|
) |
|
output = hidden_states.permute(0, 5, 1, 3, 2, 4).flatten(4, 5).flatten(2, 3) |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|