|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config |
|
from ...utils.accelerate_utils import apply_forward_hook |
|
from ..attention_processor import Attention, SpatialNorm |
|
from ..autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution |
|
from ..downsampling import Downsample2D |
|
from ..modeling_outputs import AutoencoderKLOutput |
|
from ..modeling_utils import ModelMixin |
|
from ..resnet import ResnetBlock2D |
|
from ..upsampling import Upsample2D |
|
|
|
|
|
class AllegroTemporalConvLayer(nn.Module): |
|
r""" |
|
Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from: |
|
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: Optional[int] = None, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
up_sample: bool = False, |
|
down_sample: bool = False, |
|
stride: int = 1, |
|
) -> None: |
|
super().__init__() |
|
|
|
out_dim = out_dim or in_dim |
|
pad_h = pad_w = int((stride - 1) * 0.5) |
|
pad_t = 0 |
|
|
|
self.down_sample = down_sample |
|
self.up_sample = up_sample |
|
|
|
if down_sample: |
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, in_dim), |
|
nn.SiLU(), |
|
nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)), |
|
) |
|
elif up_sample: |
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, in_dim), |
|
nn.SiLU(), |
|
nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)), |
|
) |
|
else: |
|
self.conv1 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, in_dim), |
|
nn.SiLU(), |
|
nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)), |
|
) |
|
self.conv2 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)), |
|
) |
|
self.conv3 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Dropout(dropout), |
|
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)), |
|
) |
|
self.conv4 = nn.Sequential( |
|
nn.GroupNorm(norm_num_groups, out_dim), |
|
nn.SiLU(), |
|
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)), |
|
) |
|
|
|
@staticmethod |
|
def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2) |
|
hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2) |
|
return hidden_states |
|
|
|
def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor: |
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
|
|
if self.down_sample: |
|
identity = hidden_states[:, :, ::2] |
|
elif self.up_sample: |
|
identity = hidden_states.repeat_interleave(2, dim=2) |
|
else: |
|
identity = hidden_states |
|
|
|
if self.down_sample or self.up_sample: |
|
hidden_states = self.conv1(hidden_states) |
|
else: |
|
hidden_states = self._pad_temporal_dim(hidden_states) |
|
hidden_states = self.conv1(hidden_states) |
|
|
|
if self.up_sample: |
|
hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3) |
|
|
|
hidden_states = self._pad_temporal_dim(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
hidden_states = self._pad_temporal_dim(hidden_states) |
|
hidden_states = self.conv3(hidden_states) |
|
|
|
hidden_states = self._pad_temporal_dim(hidden_states) |
|
hidden_states = self.conv4(hidden_states) |
|
|
|
hidden_states = identity + hidden_states |
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
|
|
return hidden_states |
|
|
|
|
|
class AllegroDownBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
spatial_downsample: bool = True, |
|
temporal_downsample: bool = False, |
|
downsample_padding: int = 1, |
|
): |
|
super().__init__() |
|
|
|
resnets = [] |
|
temp_convs = [] |
|
|
|
for i in range(num_layers): |
|
in_channels = in_channels if i == 0 else out_channels |
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
temb_channels=None, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
temp_convs.append( |
|
AllegroTemporalConvLayer( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
|
|
if temporal_downsample: |
|
self.temp_convs_down = AllegroTemporalConvLayer( |
|
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3 |
|
) |
|
self.add_temp_downsample = temporal_downsample |
|
|
|
if spatial_downsample: |
|
self.downsamplers = nn.ModuleList( |
|
[ |
|
Downsample2D( |
|
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" |
|
) |
|
] |
|
) |
|
else: |
|
self.downsamplers = None |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
batch_size = hidden_states.shape[0] |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
|
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs): |
|
hidden_states = resnet(hidden_states, temb=None) |
|
hidden_states = temp_conv(hidden_states, batch_size=batch_size) |
|
|
|
if self.add_temp_downsample: |
|
hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size) |
|
|
|
if self.downsamplers is not None: |
|
for downsampler in self.downsamplers: |
|
hidden_states = downsampler(hidden_states) |
|
|
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return hidden_states |
|
|
|
|
|
class AllegroUpBlock3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
out_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
output_scale_factor: float = 1.0, |
|
spatial_upsample: bool = True, |
|
temporal_upsample: bool = False, |
|
temb_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
|
|
resnets = [] |
|
temp_convs = [] |
|
|
|
for i in range(num_layers): |
|
input_channels = in_channels if i == 0 else out_channels |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=input_channels, |
|
out_channels=out_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
temp_convs.append( |
|
AllegroTemporalConvLayer( |
|
out_channels, |
|
out_channels, |
|
dropout=0.1, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
|
|
self.add_temp_upsample = temporal_upsample |
|
if temporal_upsample: |
|
self.temp_conv_up = AllegroTemporalConvLayer( |
|
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3 |
|
) |
|
|
|
if spatial_upsample: |
|
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) |
|
else: |
|
self.upsamplers = None |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
batch_size = hidden_states.shape[0] |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
|
|
for resnet, temp_conv in zip(self.resnets, self.temp_convs): |
|
hidden_states = resnet(hidden_states, temb=None) |
|
hidden_states = temp_conv(hidden_states, batch_size=batch_size) |
|
|
|
if self.add_temp_upsample: |
|
hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size) |
|
|
|
if self.upsamplers is not None: |
|
for upsampler in self.upsamplers: |
|
hidden_states = upsampler(hidden_states) |
|
|
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return hidden_states |
|
|
|
|
|
class AllegroMidBlock3DConv(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int, |
|
temb_channels: int, |
|
dropout: float = 0.0, |
|
num_layers: int = 1, |
|
resnet_eps: float = 1e-6, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_act_fn: str = "swish", |
|
resnet_groups: int = 32, |
|
resnet_pre_norm: bool = True, |
|
add_attention: bool = True, |
|
attention_head_dim: int = 1, |
|
output_scale_factor: float = 1.0, |
|
): |
|
super().__init__() |
|
|
|
|
|
resnets = [ |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
] |
|
temp_convs = [ |
|
AllegroTemporalConvLayer( |
|
in_channels, |
|
in_channels, |
|
dropout=0.1, |
|
norm_num_groups=resnet_groups, |
|
) |
|
] |
|
attentions = [] |
|
|
|
if attention_head_dim is None: |
|
attention_head_dim = in_channels |
|
|
|
for _ in range(num_layers): |
|
if add_attention: |
|
attentions.append( |
|
Attention( |
|
in_channels, |
|
heads=in_channels // attention_head_dim, |
|
dim_head=attention_head_dim, |
|
rescale_output_factor=output_scale_factor, |
|
eps=resnet_eps, |
|
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None, |
|
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None, |
|
residual_connection=True, |
|
bias=True, |
|
upcast_softmax=True, |
|
_from_deprecated_attn_block=True, |
|
) |
|
) |
|
else: |
|
attentions.append(None) |
|
|
|
resnets.append( |
|
ResnetBlock2D( |
|
in_channels=in_channels, |
|
out_channels=in_channels, |
|
temb_channels=temb_channels, |
|
eps=resnet_eps, |
|
groups=resnet_groups, |
|
dropout=dropout, |
|
time_embedding_norm=resnet_time_scale_shift, |
|
non_linearity=resnet_act_fn, |
|
output_scale_factor=output_scale_factor, |
|
pre_norm=resnet_pre_norm, |
|
) |
|
) |
|
|
|
temp_convs.append( |
|
AllegroTemporalConvLayer( |
|
in_channels, |
|
in_channels, |
|
dropout=0.1, |
|
norm_num_groups=resnet_groups, |
|
) |
|
) |
|
|
|
self.resnets = nn.ModuleList(resnets) |
|
self.temp_convs = nn.ModuleList(temp_convs) |
|
self.attentions = nn.ModuleList(attentions) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
batch_size = hidden_states.shape[0] |
|
|
|
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
hidden_states = self.resnets[0](hidden_states, temb=None) |
|
|
|
hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size) |
|
|
|
for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]): |
|
hidden_states = attn(hidden_states) |
|
hidden_states = resnet(hidden_states, temb=None) |
|
hidden_states = temp_conv(hidden_states, batch_size=batch_size) |
|
|
|
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return hidden_states |
|
|
|
|
|
class AllegroEncoder3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ( |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False], |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
double_z: bool = True, |
|
): |
|
super().__init__() |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[0], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.temp_conv_in = nn.Conv3d( |
|
in_channels=block_out_channels[0], |
|
out_channels=block_out_channels[0], |
|
kernel_size=(3, 1, 1), |
|
padding=(1, 0, 0), |
|
) |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
if down_block_type == "AllegroDownBlock3D": |
|
down_block = AllegroDownBlock3D( |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
spatial_downsample=not is_final_block, |
|
temporal_downsample=temporal_downsample_blocks[i], |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
) |
|
else: |
|
raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`") |
|
|
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = AllegroMidBlock3DConv( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
) |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
|
|
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0)) |
|
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.Tensor) -> torch.Tensor: |
|
batch_size = sample.shape[0] |
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_in(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
residual = sample |
|
sample = self.temp_conv_in(sample) |
|
sample = sample + residual |
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
for down_block in self.down_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample) |
|
|
|
|
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) |
|
else: |
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
residual = sample |
|
sample = self.temp_conv_out(sample) |
|
sample = sample + residual |
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_out(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return sample |
|
|
|
|
|
class AllegroDecoder3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels: int = 4, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ( |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
), |
|
temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False], |
|
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
norm_type: str = "group", |
|
): |
|
super().__init__() |
|
|
|
self.conv_in = nn.Conv2d( |
|
in_channels, |
|
block_out_channels[-1], |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0)) |
|
|
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
temb_channels = in_channels if norm_type == "spatial" else None |
|
|
|
|
|
self.mid_block = AllegroMidBlock3DConv( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=temb_channels, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
|
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
if up_block_type == "AllegroUpBlock3D": |
|
up_block = AllegroUpBlock3D( |
|
num_layers=layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
spatial_upsample=not is_final_block, |
|
temporal_upsample=temporal_upsample_blocks[i], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
temb_channels=temb_channels, |
|
resnet_time_scale_shift=norm_type, |
|
) |
|
else: |
|
raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`") |
|
|
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_type == "spatial": |
|
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) |
|
else: |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
|
|
self.conv_act = nn.SiLU() |
|
|
|
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0)) |
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward(self, sample: torch.Tensor) -> torch.Tensor: |
|
batch_size = sample.shape[0] |
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_in(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
residual = sample |
|
sample = self.temp_conv_in(sample) |
|
sample = sample + residual |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
|
|
if torch.is_grad_enabled() and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
|
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample) |
|
|
|
else: |
|
|
|
sample = self.mid_block(sample) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample) |
|
|
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
residual = sample |
|
sample = self.temp_conv_out(sample) |
|
sample = sample + residual |
|
|
|
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
sample = self.conv_out(sample) |
|
|
|
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return sample |
|
|
|
|
|
class AutoencoderKLAllegro(ModelMixin, ConfigMixin): |
|
r""" |
|
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in |
|
[Allegro](https://github.com/rhymes-ai/Allegro). |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, defaults to `3`): |
|
Number of channels in the input image. |
|
out_channels (int, defaults to `3`): |
|
Number of channels in the output. |
|
down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`): |
|
Tuple of strings denoting which types of down blocks to use. |
|
up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`): |
|
Tuple of strings denoting which types of up blocks to use. |
|
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`): |
|
Tuple of integers denoting number of output channels in each block. |
|
temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`): |
|
Tuple of booleans denoting which blocks to enable temporal downsampling in. |
|
latent_channels (`int`, defaults to `4`): |
|
Number of channels in latents. |
|
layers_per_block (`int`, defaults to `2`): |
|
Number of resnet or attention or temporal convolution layers per down/up block. |
|
act_fn (`str`, defaults to `"silu"`): |
|
The activation function to use. |
|
norm_num_groups (`int`, defaults to `32`): |
|
Number of groups to use in normalization layers. |
|
temporal_compression_ratio (`int`, defaults to `4`): |
|
Ratio by which temporal dimension of samples are compressed. |
|
sample_size (`int`, defaults to `320`): |
|
Default latent size. |
|
scaling_factor (`float`, defaults to `0.13235`): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
force_upcast (`bool`, default to `True`): |
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE |
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case |
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ( |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
"AllegroDownBlock3D", |
|
), |
|
up_block_types: Tuple[str, ...] = ( |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
"AllegroUpBlock3D", |
|
), |
|
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False), |
|
temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False), |
|
latent_channels: int = 4, |
|
layers_per_block: int = 2, |
|
act_fn: str = "silu", |
|
norm_num_groups: int = 32, |
|
temporal_compression_ratio: float = 4, |
|
sample_size: int = 320, |
|
scaling_factor: float = 0.13, |
|
force_upcast: bool = True, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.encoder = AllegroEncoder3D( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
temporal_downsample_blocks=temporal_downsample_blocks, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=True, |
|
) |
|
self.decoder = AllegroDecoder3D( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
temporal_upsample_blocks=temporal_upsample_blocks, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
norm_num_groups=norm_num_groups, |
|
act_fn=act_fn, |
|
) |
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
|
|
|
|
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1) |
|
self.tile_overlap_t = 8 |
|
self.tile_overlap_h = 120 |
|
self.tile_overlap_w = 80 |
|
sample_frames = 24 |
|
|
|
self.kernel = (sample_frames, sample_size, sample_size) |
|
self.stride = ( |
|
sample_frames - self.tile_overlap_t, |
|
sample_size - self.tile_overlap_h, |
|
sample_size - self.tile_overlap_w, |
|
) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)): |
|
module.gradient_checkpointing = value |
|
|
|
def enable_tiling(self) -> None: |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.use_tiling = True |
|
|
|
def disable_tiling(self) -> None: |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_tiling = False |
|
|
|
def enable_slicing(self) -> None: |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self) -> None: |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
def _encode(self, x: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if self.use_tiling: |
|
return self.tiled_encode(x) |
|
|
|
raise NotImplementedError("Encoding without tiling has not been implemented yet.") |
|
|
|
@apply_forward_hook |
|
def encode( |
|
self, x: torch.Tensor, return_dict: bool = True |
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: |
|
r""" |
|
Encode a batch of videos into latents. |
|
|
|
Args: |
|
x (`torch.Tensor`): |
|
Input batch of videos. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded videos. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
if self.use_slicing and x.shape[0] > 1: |
|
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)] |
|
h = torch.cat(encoded_slices) |
|
else: |
|
h = self._encode(x) |
|
|
|
posterior = DiagonalGaussianDistribution(h) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode(self, z: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
if self.use_tiling: |
|
return self.tiled_decode(z) |
|
|
|
raise NotImplementedError("Decoding without tiling has not been implemented yet.") |
|
|
|
@apply_forward_hook |
|
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]: |
|
""" |
|
Decode a batch of videos. |
|
|
|
Args: |
|
z (`torch.Tensor`): |
|
Input batch of latent vectors. |
|
return_dict (`bool`, defaults to `True`): |
|
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z) |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
return DecoderOutput(sample=decoded) |
|
|
|
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor: |
|
local_batch_size = 1 |
|
rs = self.spatial_compression_ratio |
|
rt = self.config.temporal_compression_ratio |
|
|
|
batch_size, num_channels, num_frames, height, width = x.shape |
|
|
|
output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1 |
|
output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1 |
|
output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1 |
|
|
|
count = 0 |
|
output_latent = x.new_zeros( |
|
( |
|
output_num_frames * output_height * output_width, |
|
2 * self.config.latent_channels, |
|
self.kernel[0] // rt, |
|
self.kernel[1] // rs, |
|
self.kernel[2] // rs, |
|
) |
|
) |
|
vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])) |
|
|
|
for i in range(output_num_frames): |
|
for j in range(output_height): |
|
for k in range(output_width): |
|
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0] |
|
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1] |
|
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2] |
|
|
|
video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end] |
|
vae_batch_input[count % local_batch_size] = video_cube |
|
|
|
if ( |
|
count % local_batch_size == local_batch_size - 1 |
|
or count == output_num_frames * output_height * output_width - 1 |
|
): |
|
latent = self.encoder(vae_batch_input) |
|
|
|
if ( |
|
count == output_num_frames * output_height * output_width - 1 |
|
and count % local_batch_size != local_batch_size - 1 |
|
): |
|
output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1] |
|
else: |
|
output_latent[count - local_batch_size + 1 : count + 1] = latent |
|
|
|
vae_batch_input = x.new_zeros( |
|
(local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]) |
|
) |
|
|
|
count += 1 |
|
|
|
latent = x.new_zeros( |
|
(batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs) |
|
) |
|
output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs |
|
output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs |
|
output_overlap = ( |
|
output_kernel[0] - output_stride[0], |
|
output_kernel[1] - output_stride[1], |
|
output_kernel[2] - output_stride[2], |
|
) |
|
|
|
for i in range(output_num_frames): |
|
n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0] |
|
for j in range(output_height): |
|
h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1] |
|
for k in range(output_width): |
|
w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2] |
|
latent_mean = _prepare_for_blend( |
|
(i, output_num_frames, output_overlap[0]), |
|
(j, output_height, output_overlap[1]), |
|
(k, output_width, output_overlap[2]), |
|
output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0), |
|
) |
|
latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean |
|
|
|
latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
latent = self.quant_conv(latent) |
|
latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
return latent |
|
|
|
def tiled_decode(self, z: torch.Tensor) -> torch.Tensor: |
|
local_batch_size = 1 |
|
rs = self.spatial_compression_ratio |
|
rt = self.config.temporal_compression_ratio |
|
|
|
latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs |
|
latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs |
|
|
|
batch_size, num_channels, num_frames, height, width = z.shape |
|
|
|
|
|
z = z.permute(0, 2, 1, 3, 4).flatten(0, 1) |
|
z = self.post_quant_conv(z) |
|
z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4) |
|
|
|
output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1 |
|
output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1 |
|
output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1 |
|
|
|
count = 0 |
|
decoded_videos = z.new_zeros( |
|
( |
|
output_num_frames * output_height * output_width, |
|
self.config.out_channels, |
|
self.kernel[0], |
|
self.kernel[1], |
|
self.kernel[2], |
|
) |
|
) |
|
vae_batch_input = z.new_zeros( |
|
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2]) |
|
) |
|
|
|
for i in range(output_num_frames): |
|
for j in range(output_height): |
|
for k in range(output_width): |
|
n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0] |
|
h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1] |
|
w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2] |
|
|
|
current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end] |
|
vae_batch_input[count % local_batch_size] = current_latent |
|
|
|
if ( |
|
count % local_batch_size == local_batch_size - 1 |
|
or count == output_num_frames * output_height * output_width - 1 |
|
): |
|
current_video = self.decoder(vae_batch_input) |
|
|
|
if ( |
|
count == output_num_frames * output_height * output_width - 1 |
|
and count % local_batch_size != local_batch_size - 1 |
|
): |
|
decoded_videos[count - count % local_batch_size :] = current_video[ |
|
: count % local_batch_size + 1 |
|
] |
|
else: |
|
decoded_videos[count - local_batch_size + 1 : count + 1] = current_video |
|
|
|
vae_batch_input = z.new_zeros( |
|
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2]) |
|
) |
|
|
|
count += 1 |
|
|
|
video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs)) |
|
video_overlap = ( |
|
self.kernel[0] - self.stride[0], |
|
self.kernel[1] - self.stride[1], |
|
self.kernel[2] - self.stride[2], |
|
) |
|
|
|
for i in range(output_num_frames): |
|
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0] |
|
for j in range(output_height): |
|
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1] |
|
for k in range(output_width): |
|
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2] |
|
out_video_blend = _prepare_for_blend( |
|
(i, output_num_frames, video_overlap[0]), |
|
(j, output_height, video_overlap[1]), |
|
(k, output_width, video_overlap[2]), |
|
decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0), |
|
) |
|
video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend |
|
|
|
video = video.permute(0, 2, 1, 3, 4).contiguous() |
|
return video |
|
|
|
def forward( |
|
self, |
|
sample: torch.Tensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, torch.Tensor]: |
|
r""" |
|
Args: |
|
sample (`torch.Tensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
generator (`torch.Generator`, *optional*): |
|
PyTorch random number generator. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
|
|
def _prepare_for_blend(n_param, h_param, w_param, x): |
|
|
|
n, n_max, overlap_n = n_param |
|
h, h_max, overlap_h = h_param |
|
w, w_max, overlap_w = w_param |
|
if overlap_n > 0: |
|
if n > 0: |
|
x[:, :, 0:overlap_n, :, :] = x[:, :, 0:overlap_n, :, :] * ( |
|
torch.arange(0, overlap_n).float().to(x.device) / overlap_n |
|
).reshape(overlap_n, 1, 1) |
|
if n < n_max - 1: |
|
x[:, :, -overlap_n:, :, :] = x[:, :, -overlap_n:, :, :] * ( |
|
1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n |
|
).reshape(overlap_n, 1, 1) |
|
if h > 0: |
|
x[:, :, :, 0:overlap_h, :] = x[:, :, :, 0:overlap_h, :] * ( |
|
torch.arange(0, overlap_h).float().to(x.device) / overlap_h |
|
).reshape(overlap_h, 1) |
|
if h < h_max - 1: |
|
x[:, :, :, -overlap_h:, :] = x[:, :, :, -overlap_h:, :] * ( |
|
1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h |
|
).reshape(overlap_h, 1) |
|
if w > 0: |
|
x[:, :, :, :, 0:overlap_w] = x[:, :, :, :, 0:overlap_w] * ( |
|
torch.arange(0, overlap_w).float().to(x.device) / overlap_w |
|
) |
|
if w < w_max - 1: |
|
x[:, :, :, :, -overlap_w:] = x[:, :, :, :, -overlap_w:] * ( |
|
1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w |
|
) |
|
return x |
|
|