|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import inspect |
|
import os |
|
from pathlib import Path |
|
from typing import Callable, Dict, List, Optional, Union |
|
|
|
import safetensors |
|
import torch |
|
import torch.nn as nn |
|
from huggingface_hub import model_info |
|
from huggingface_hub.constants import HF_HUB_OFFLINE |
|
|
|
from ..models.modeling_utils import ModelMixin, load_state_dict |
|
from ..utils import ( |
|
USE_PEFT_BACKEND, |
|
_get_model_file, |
|
delete_adapter_layers, |
|
deprecate, |
|
is_accelerate_available, |
|
is_peft_available, |
|
is_transformers_available, |
|
logging, |
|
recurse_remove_peft_layers, |
|
set_adapter_layers, |
|
set_weights_and_activate_adapters, |
|
) |
|
|
|
|
|
if is_transformers_available(): |
|
from transformers import PreTrainedModel |
|
|
|
if is_peft_available(): |
|
from peft.tuners.tuners_utils import BaseTunerLayer |
|
|
|
if is_accelerate_available(): |
|
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin" |
|
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors" |
|
|
|
|
|
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None): |
|
""" |
|
Fuses LoRAs for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`): |
|
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
lora_scale (`float`, defaults to 1.0): |
|
Controls how much to influence the outputs with the LoRA parameters. |
|
safe_fusing (`bool`, defaults to `False`): |
|
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. |
|
adapter_names (`List[str]` or `str`): |
|
The names of the adapters to use. |
|
""" |
|
merge_kwargs = {"safe_merge": safe_fusing} |
|
|
|
for module in text_encoder.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
if lora_scale != 1.0: |
|
module.scale_layer(lora_scale) |
|
|
|
|
|
|
|
supported_merge_kwargs = list(inspect.signature(module.merge).parameters) |
|
if "adapter_names" in supported_merge_kwargs: |
|
merge_kwargs["adapter_names"] = adapter_names |
|
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None: |
|
raise ValueError( |
|
"The `adapter_names` argument is not supported with your PEFT version. " |
|
"Please upgrade to the latest version of PEFT. `pip install -U peft`" |
|
) |
|
|
|
module.merge(**merge_kwargs) |
|
|
|
|
|
def unfuse_text_encoder_lora(text_encoder): |
|
""" |
|
Unfuses LoRAs for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`): |
|
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
""" |
|
for module in text_encoder.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.unmerge() |
|
|
|
|
|
def set_adapters_for_text_encoder( |
|
adapter_names: Union[List[str], str], |
|
text_encoder: Optional["PreTrainedModel"] = None, |
|
text_encoder_weights: Optional[Union[float, List[float], List[None]]] = None, |
|
): |
|
""" |
|
Sets the adapter layers for the text encoder. |
|
|
|
Args: |
|
adapter_names (`List[str]` or `str`): |
|
The names of the adapters to use. |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
text_encoder_weights (`List[float]`, *optional*): |
|
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters. |
|
""" |
|
if text_encoder is None: |
|
raise ValueError( |
|
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead." |
|
) |
|
|
|
def process_weights(adapter_names, weights): |
|
|
|
|
|
if not isinstance(weights, list): |
|
weights = [weights] * len(adapter_names) |
|
|
|
if len(adapter_names) != len(weights): |
|
raise ValueError( |
|
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}" |
|
) |
|
|
|
|
|
|
|
weights = [w if w is not None else 1.0 for w in weights] |
|
|
|
return weights |
|
|
|
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names |
|
text_encoder_weights = process_weights(adapter_names, text_encoder_weights) |
|
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights) |
|
|
|
|
|
def disable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None): |
|
""" |
|
Disables the LoRA layers for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
""" |
|
if text_encoder is None: |
|
raise ValueError("Text Encoder not found.") |
|
set_adapter_layers(text_encoder, enabled=False) |
|
|
|
|
|
def enable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None): |
|
""" |
|
Enables the LoRA layers for the text encoder. |
|
|
|
Args: |
|
text_encoder (`torch.nn.Module`, *optional*): |
|
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder` |
|
attribute. |
|
""" |
|
if text_encoder is None: |
|
raise ValueError("Text Encoder not found.") |
|
set_adapter_layers(text_encoder, enabled=True) |
|
|
|
|
|
def _remove_text_encoder_monkey_patch(text_encoder): |
|
recurse_remove_peft_layers(text_encoder) |
|
if getattr(text_encoder, "peft_config", None) is not None: |
|
del text_encoder.peft_config |
|
text_encoder._hf_peft_config_loaded = None |
|
|
|
|
|
def _fetch_state_dict( |
|
pretrained_model_name_or_path_or_dict, |
|
weight_name, |
|
use_safetensors, |
|
local_files_only, |
|
cache_dir, |
|
force_download, |
|
proxies, |
|
token, |
|
revision, |
|
subfolder, |
|
user_agent, |
|
allow_pickle, |
|
): |
|
model_file = None |
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
|
|
if (use_safetensors and weight_name is None) or ( |
|
weight_name is not None and weight_name.endswith(".safetensors") |
|
): |
|
try: |
|
|
|
|
|
|
|
if weight_name is None: |
|
weight_name = _best_guess_weight_name( |
|
pretrained_model_name_or_path_or_dict, |
|
file_extension=".safetensors", |
|
local_files_only=local_files_only, |
|
) |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = safetensors.torch.load_file(model_file, device="cpu") |
|
except (IOError, safetensors.SafetensorError) as e: |
|
if not allow_pickle: |
|
raise e |
|
|
|
model_file = None |
|
pass |
|
|
|
if model_file is None: |
|
if weight_name is None: |
|
weight_name = _best_guess_weight_name( |
|
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only |
|
) |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name or LORA_WEIGHT_NAME, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
state_dict = load_state_dict(model_file) |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
return state_dict |
|
|
|
|
|
def _best_guess_weight_name( |
|
pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False |
|
): |
|
if local_files_only or HF_HUB_OFFLINE: |
|
raise ValueError("When using the offline mode, you must specify a `weight_name`.") |
|
|
|
targeted_files = [] |
|
|
|
if os.path.isfile(pretrained_model_name_or_path_or_dict): |
|
return |
|
elif os.path.isdir(pretrained_model_name_or_path_or_dict): |
|
targeted_files = [f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)] |
|
else: |
|
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings |
|
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)] |
|
if len(targeted_files) == 0: |
|
return |
|
|
|
|
|
|
|
|
|
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"} |
|
targeted_files = list( |
|
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files) |
|
) |
|
|
|
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files): |
|
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files)) |
|
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files): |
|
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files)) |
|
|
|
if len(targeted_files) > 1: |
|
raise ValueError( |
|
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}." |
|
) |
|
weight_name = targeted_files[0] |
|
return weight_name |
|
|
|
|
|
class LoraBaseMixin: |
|
"""Utility class for handling LoRAs.""" |
|
|
|
_lora_loadable_modules = [] |
|
num_fused_loras = 0 |
|
|
|
def load_lora_weights(self, **kwargs): |
|
raise NotImplementedError("`load_lora_weights()` is not implemented.") |
|
|
|
@classmethod |
|
def save_lora_weights(cls, **kwargs): |
|
raise NotImplementedError("`save_lora_weights()` not implemented.") |
|
|
|
@classmethod |
|
def lora_state_dict(cls, **kwargs): |
|
raise NotImplementedError("`lora_state_dict()` is not implemented.") |
|
|
|
@classmethod |
|
def _optionally_disable_offloading(cls, _pipeline): |
|
""" |
|
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU. |
|
|
|
Args: |
|
_pipeline (`DiffusionPipeline`): |
|
The pipeline to disable offloading for. |
|
|
|
Returns: |
|
tuple: |
|
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True. |
|
""" |
|
is_model_cpu_offload = False |
|
is_sequential_cpu_offload = False |
|
|
|
if _pipeline is not None and _pipeline.hf_device_map is None: |
|
for _, component in _pipeline.components.items(): |
|
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"): |
|
if not is_model_cpu_offload: |
|
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload) |
|
if not is_sequential_cpu_offload: |
|
is_sequential_cpu_offload = ( |
|
isinstance(component._hf_hook, AlignDevicesHook) |
|
or hasattr(component._hf_hook, "hooks") |
|
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook) |
|
) |
|
|
|
logger.info( |
|
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again." |
|
) |
|
remove_hook_from_module(component, recurse=is_sequential_cpu_offload) |
|
|
|
return (is_model_cpu_offload, is_sequential_cpu_offload) |
|
|
|
@classmethod |
|
def _fetch_state_dict(cls, *args, **kwargs): |
|
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`." |
|
deprecate("_fetch_state_dict", "0.35.0", deprecation_message) |
|
return _fetch_state_dict(*args, **kwargs) |
|
|
|
@classmethod |
|
def _best_guess_weight_name(cls, *args, **kwargs): |
|
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`." |
|
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message) |
|
return _best_guess_weight_name(*args, **kwargs) |
|
|
|
def unload_lora_weights(self): |
|
""" |
|
Unloads the LoRA parameters. |
|
|
|
Examples: |
|
|
|
```python |
|
>>> # Assuming `pipeline` is already loaded with the LoRA parameters. |
|
>>> pipeline.unload_lora_weights() |
|
>>> ... |
|
``` |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None: |
|
if issubclass(model.__class__, ModelMixin): |
|
model.unload_lora() |
|
elif issubclass(model.__class__, PreTrainedModel): |
|
_remove_text_encoder_monkey_patch(model) |
|
|
|
def fuse_lora( |
|
self, |
|
components: List[str] = [], |
|
lora_scale: float = 1.0, |
|
safe_fusing: bool = False, |
|
adapter_names: Optional[List[str]] = None, |
|
**kwargs, |
|
): |
|
r""" |
|
Fuses the LoRA parameters into the original parameters of the corresponding blocks. |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into. |
|
lora_scale (`float`, defaults to 1.0): |
|
Controls how much to influence the outputs with the LoRA parameters. |
|
safe_fusing (`bool`, defaults to `False`): |
|
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them. |
|
adapter_names (`List[str]`, *optional*): |
|
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused. |
|
|
|
Example: |
|
|
|
```py |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 |
|
).to("cuda") |
|
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") |
|
pipeline.fuse_lora(lora_scale=0.7) |
|
``` |
|
""" |
|
if "fuse_unet" in kwargs: |
|
depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version." |
|
deprecate( |
|
"fuse_unet", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
if "fuse_transformer" in kwargs: |
|
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version." |
|
deprecate( |
|
"fuse_transformer", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
if "fuse_text_encoder" in kwargs: |
|
depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version." |
|
deprecate( |
|
"fuse_text_encoder", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
|
|
if len(components) == 0: |
|
raise ValueError("`components` cannot be an empty list.") |
|
|
|
for fuse_component in components: |
|
if fuse_component not in self._lora_loadable_modules: |
|
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") |
|
|
|
model = getattr(self, fuse_component, None) |
|
if model is not None: |
|
|
|
if issubclass(model.__class__, ModelMixin): |
|
model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names) |
|
|
|
if issubclass(model.__class__, PreTrainedModel): |
|
fuse_text_encoder_lora( |
|
model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names |
|
) |
|
|
|
self.num_fused_loras += 1 |
|
|
|
def unfuse_lora(self, components: List[str] = [], **kwargs): |
|
r""" |
|
Reverses the effect of |
|
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora). |
|
|
|
<Tip warning={true}> |
|
|
|
This is an experimental API. |
|
|
|
</Tip> |
|
|
|
Args: |
|
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from. |
|
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters. |
|
unfuse_text_encoder (`bool`, defaults to `True`): |
|
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the |
|
LoRA parameters then it won't have any effect. |
|
""" |
|
if "unfuse_unet" in kwargs: |
|
depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version." |
|
deprecate( |
|
"unfuse_unet", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
if "unfuse_transformer" in kwargs: |
|
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version." |
|
deprecate( |
|
"unfuse_transformer", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
if "unfuse_text_encoder" in kwargs: |
|
depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version." |
|
deprecate( |
|
"unfuse_text_encoder", |
|
"1.0.0", |
|
depr_message, |
|
) |
|
|
|
if len(components) == 0: |
|
raise ValueError("`components` cannot be an empty list.") |
|
|
|
for fuse_component in components: |
|
if fuse_component not in self._lora_loadable_modules: |
|
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.") |
|
|
|
model = getattr(self, fuse_component, None) |
|
if model is not None: |
|
if issubclass(model.__class__, (ModelMixin, PreTrainedModel)): |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
module.unmerge() |
|
|
|
self.num_fused_loras -= 1 |
|
|
|
def set_adapters( |
|
self, |
|
adapter_names: Union[List[str], str], |
|
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None, |
|
): |
|
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names |
|
|
|
adapter_weights = copy.deepcopy(adapter_weights) |
|
|
|
|
|
if not isinstance(adapter_weights, list): |
|
adapter_weights = [adapter_weights] * len(adapter_names) |
|
|
|
if len(adapter_names) != len(adapter_weights): |
|
raise ValueError( |
|
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}" |
|
) |
|
|
|
list_adapters = self.get_list_adapters() |
|
|
|
all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters} |
|
missing_adapters = set(adapter_names) - all_adapters |
|
if len(missing_adapters) > 0: |
|
raise ValueError( |
|
f"Adapter name(s) {missing_adapters} not in the list of present adapters: {all_adapters}." |
|
) |
|
|
|
|
|
invert_list_adapters = { |
|
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters] |
|
for adapter in all_adapters |
|
} |
|
|
|
|
|
_component_adapter_weights = {} |
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component) |
|
|
|
for adapter_name, weights in zip(adapter_names, adapter_weights): |
|
if isinstance(weights, dict): |
|
component_adapter_weights = weights.pop(component, None) |
|
|
|
if component_adapter_weights is not None and not hasattr(self, component): |
|
logger.warning( |
|
f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}." |
|
) |
|
|
|
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]: |
|
logger.warning( |
|
( |
|
f"Lora weight dict for adapter '{adapter_name}' contains {component}," |
|
f"but this will be ignored because {adapter_name} does not contain weights for {component}." |
|
f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}." |
|
) |
|
) |
|
|
|
else: |
|
component_adapter_weights = weights |
|
|
|
_component_adapter_weights.setdefault(component, []) |
|
_component_adapter_weights[component].append(component_adapter_weights) |
|
|
|
if issubclass(model.__class__, ModelMixin): |
|
model.set_adapters(adapter_names, _component_adapter_weights[component]) |
|
elif issubclass(model.__class__, PreTrainedModel): |
|
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component]) |
|
|
|
def disable_lora(self): |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None: |
|
if issubclass(model.__class__, ModelMixin): |
|
model.disable_lora() |
|
elif issubclass(model.__class__, PreTrainedModel): |
|
disable_lora_for_text_encoder(model) |
|
|
|
def enable_lora(self): |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None: |
|
if issubclass(model.__class__, ModelMixin): |
|
model.enable_lora() |
|
elif issubclass(model.__class__, PreTrainedModel): |
|
enable_lora_for_text_encoder(model) |
|
|
|
def delete_adapters(self, adapter_names: Union[List[str], str]): |
|
""" |
|
Args: |
|
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s). |
|
adapter_names (`Union[List[str], str]`): |
|
The names of the adapter to delete. Can be a single string or a list of strings |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
if isinstance(adapter_names, str): |
|
adapter_names = [adapter_names] |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None: |
|
if issubclass(model.__class__, ModelMixin): |
|
model.delete_adapters(adapter_names) |
|
elif issubclass(model.__class__, PreTrainedModel): |
|
for adapter_name in adapter_names: |
|
delete_adapter_layers(model, adapter_name) |
|
|
|
def get_active_adapters(self) -> List[str]: |
|
""" |
|
Gets the list of the current active adapters. |
|
|
|
Example: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
|
|
pipeline = DiffusionPipeline.from_pretrained( |
|
"stabilityai/stable-diffusion-xl-base-1.0", |
|
).to("cuda") |
|
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy") |
|
pipeline.get_active_adapters() |
|
``` |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError( |
|
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" |
|
) |
|
|
|
active_adapters = [] |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None and issubclass(model.__class__, ModelMixin): |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
active_adapters = module.active_adapters |
|
break |
|
|
|
return active_adapters |
|
|
|
def get_list_adapters(self) -> Dict[str, List[str]]: |
|
""" |
|
Gets the current list of all available adapters in the pipeline. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError( |
|
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`" |
|
) |
|
|
|
set_adapters = {} |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if ( |
|
model is not None |
|
and issubclass(model.__class__, (ModelMixin, PreTrainedModel)) |
|
and hasattr(model, "peft_config") |
|
): |
|
set_adapters[component] = list(model.peft_config.keys()) |
|
|
|
return set_adapters |
|
|
|
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None: |
|
""" |
|
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case |
|
you want to load multiple adapters and free some GPU memory. |
|
|
|
Args: |
|
adapter_names (`List[str]`): |
|
List of adapters to send device to. |
|
device (`Union[torch.device, str, int]`): |
|
Device to send the adapters to. Can be either a torch device, a str or an integer. |
|
""" |
|
if not USE_PEFT_BACKEND: |
|
raise ValueError("PEFT backend is required for this method.") |
|
|
|
for component in self._lora_loadable_modules: |
|
model = getattr(self, component, None) |
|
if model is not None: |
|
for module in model.modules(): |
|
if isinstance(module, BaseTunerLayer): |
|
for adapter_name in adapter_names: |
|
module.lora_A[adapter_name].to(device) |
|
module.lora_B[adapter_name].to(device) |
|
|
|
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None: |
|
if adapter_name in module.lora_magnitude_vector: |
|
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[ |
|
adapter_name |
|
].to(device) |
|
|
|
@staticmethod |
|
def pack_weights(layers, prefix): |
|
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers |
|
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()} |
|
return layers_state_dict |
|
|
|
@staticmethod |
|
def write_lora_layers( |
|
state_dict: Dict[str, torch.Tensor], |
|
save_directory: str, |
|
is_main_process: bool, |
|
weight_name: str, |
|
save_function: Callable, |
|
safe_serialization: bool, |
|
): |
|
if os.path.isfile(save_directory): |
|
logger.error(f"Provided path ({save_directory}) should be a directory, not a file") |
|
return |
|
|
|
if save_function is None: |
|
if safe_serialization: |
|
|
|
def save_function(weights, filename): |
|
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"}) |
|
|
|
else: |
|
save_function = torch.save |
|
|
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
if weight_name is None: |
|
if safe_serialization: |
|
weight_name = LORA_WEIGHT_NAME_SAFE |
|
else: |
|
weight_name = LORA_WEIGHT_NAME |
|
|
|
save_path = Path(save_directory, weight_name).as_posix() |
|
save_function(state_dict, save_path) |
|
logger.info(f"Model weights saved in {save_path}") |
|
|
|
@property |
|
def lora_scale(self) -> float: |
|
|
|
|
|
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0 |
|
|