Kiss3DGen / pipeline /custom_pipelines /pipeline_flux_prior_redux.py
JiantaoLin
new
02a9751
raw
history blame
22.3 kB
# copied from diffusers/src/diffusers/pipelines/flux/pipeline_flux_prior_redux.py
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Union
import torch
from PIL import Image
from transformers import (
CLIPTextModel,
CLIPTokenizer,
SiglipImageProcessor,
SiglipVisionModel,
T5EncoderModel,
T5TokenizerFast,
)
from diffusers.image_processor import PipelineImageInput
from diffusers.loaders import FluxLoraLoaderMixin, TextualInversionLoaderMixin
from diffusers.utils import (
USE_PEFT_BACKEND,
is_torch_xla_available,
logging,
replace_example_docstring,
scale_lora_layers,
unscale_lora_layers,
)
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.flux.modeling_flux import ReduxImageEncoder
from diffusers.pipelines.flux.pipeline_output import FluxPriorReduxPipelineOutput
if is_torch_xla_available():
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import FluxPriorReduxPipeline, FluxPipeline
>>> from diffusers.utils import load_image
>>> device = "cuda"
>>> dtype = torch.bfloat16
>>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
>>> repo_base = "black-forest-labs/FLUX.1-dev"
>>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
>>> pipe = FluxPipeline.from_pretrained(
... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16
... ).to(device)
>>> image = load_image(
... "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
... )
>>> pipe_prior_output = pipe_prior_redux(image)
>>> images = pipe(
... guidance_scale=2.5,
... num_inference_steps=50,
... generator=torch.Generator("cpu").manual_seed(0),
... **pipe_prior_output,
... ).images
>>> images[0].save("flux-redux.png")
```
"""
class FluxPriorReduxPipeline(DiffusionPipeline):
r"""
The Flux Redux pipeline for image-to-image generation.
Reference: https://blackforestlabs.ai/flux-1-tools/
Args:
image_encoder ([`SiglipVisionModel`]):
SIGLIP vision model to encode the input image.
feature_extractor ([`SiglipImageProcessor`]):
Image processor for preprocessing images for the SIGLIP model.
image_embedder ([`ReduxImageEncoder`]):
Redux image encoder to process the SIGLIP embeddings.
text_encoder ([`CLIPTextModel`], *optional*):
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
text_encoder_2 ([`T5EncoderModel`], *optional*):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
tokenizer (`CLIPTokenizer`, *optional*):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
tokenizer_2 (`T5TokenizerFast`, *optional*):
Second Tokenizer of class
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
"""
model_cpu_offload_seq = "image_encoder->image_embedder"
_optional_components = [
"text_encoder",
"tokenizer",
"text_encoder_2",
"tokenizer_2",
]
_callback_tensor_inputs = []
def __init__(
self,
image_encoder: SiglipVisionModel,
feature_extractor: SiglipImageProcessor,
image_embedder: ReduxImageEncoder,
text_encoder: CLIPTextModel = None,
tokenizer: CLIPTokenizer = None,
text_encoder_2: T5EncoderModel = None,
tokenizer_2: T5TokenizerFast = None,
):
super().__init__()
self.register_modules(
image_encoder=image_encoder,
feature_extractor=feature_extractor,
image_embedder=image_embedder,
text_encoder=text_encoder,
tokenizer=tokenizer,
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
def check_inputs(
self,
image,
prompt,
prompt_2,
prompt_embeds=None,
pooled_prompt_embeds=None,
prompt_embeds_scale=1.0,
pooled_prompt_embeds_scale=1.0,
):
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt_2 is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
if prompt is not None and (isinstance(prompt, list) and isinstance(image, list) and len(prompt) != len(image)):
raise ValueError(
f"number of prompts must be equal to number of images, but {len(prompt)} prompts were provided and {len(image)} images"
)
if prompt_embeds is not None and pooled_prompt_embeds is None:
raise ValueError(
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
)
if isinstance(prompt_embeds_scale, list) and (
isinstance(image, list) and len(prompt_embeds_scale) != len(image)
):
raise ValueError(
f"number of weights must be equal to number of images, but {len(prompt_embeds_scale)} weights were provided and {len(image)} images"
)
def encode_image(self, image, device, num_images_per_prompt):
dtype = next(self.image_encoder.parameters()).dtype
image = self.feature_extractor.preprocess(
images=image, do_resize=True, return_tensors="pt", do_convert_rgb=True
)
image = image.to(device=device, dtype=dtype)
image_enc_hidden_states = self.image_encoder(**image).last_hidden_state
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
return image_enc_hidden_states
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 512,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
text_inputs = self.tokenizer_2(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because `max_sequence_length` is set to "
f" {max_sequence_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
dtype = self.text_encoder_2.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
):
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if isinstance(self, TextualInversionLoaderMixin):
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer_max_length} tokens: {removed_text}"
)
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
prompt_2: Union[str, List[str]],
device: Optional[torch.device] = None,
num_images_per_prompt: int = 1,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
max_sequence_length: int = 512,
lora_scale: Optional[float] = None,
):
r"""
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
used in all text-encoders
device: (`torch.device`):
torch device
num_images_per_prompt (`int`):
number of images that should be generated per prompt
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
If not provided, pooled text embeddings will be generated from `prompt` input argument.
lora_scale (`float`, *optional*):
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
"""
device = device or self._execution_device
# set lora scale so that monkey patched LoRA
# function of text encoder can correctly access it
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
self._lora_scale = lora_scale
# dynamically adjust the LoRA scale
if self.text_encoder is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
scale_lora_layers(self.text_encoder_2, lora_scale)
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt_embeds is None:
prompt_2 = prompt_2 or prompt
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
# We only use the pooled prompt output from the CLIPTextModel
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt_2,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
)
if self.text_encoder is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder, lora_scale)
if self.text_encoder_2 is not None:
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
# Retrieve the original scale by scaling back the LoRA layers
unscale_lora_layers(self.text_encoder_2, lora_scale)
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
return prompt_embeds, pooled_prompt_embeds, text_ids
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
image: PipelineImageInput,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
pooled_prompt_embeds_scale: Optional[Union[float, List[float]]] = 1.0,
strength: Optional[Union[float, List[float]]] = 1.0,
return_dict: bool = True,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
`Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)`
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. **experimental feature**: to use this feature,
make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders
are not loaded.
prompt_2 (`str` or `List[str]`, *optional*):
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated pooled text embeddings.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.flux.FluxPriorReduxPipelineOutput`] instead of a plain tuple.
Examples:
Returns:
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] or `tuple`:
[`~pipelines.flux.FluxPriorReduxPipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is a list with the generated images.
"""
# 1. Check inputs. Raise error if not correct
self.check_inputs(
image,
prompt,
prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
prompt_embeds_scale=prompt_embeds_scale,
pooled_prompt_embeds_scale=pooled_prompt_embeds_scale,
)
# 2. Define call parameters
if image is not None and isinstance(image, Image.Image):
batch_size = 1
elif image is not None and isinstance(image, list):
batch_size = len(image)
else:
batch_size = image.shape[0]
if prompt is not None and isinstance(prompt, str):
prompt = batch_size * [prompt]
if isinstance(prompt_embeds_scale, float):
prompt_embeds_scale = batch_size * [prompt_embeds_scale]
if isinstance(pooled_prompt_embeds_scale, float):
pooled_prompt_embeds_scale = batch_size * [pooled_prompt_embeds_scale]
if isinstance(strength, float):
strength = batch_size * [strength]
device = self._execution_device
# 3. Prepare image embeddings
image_latents = self.encode_image(image, device, 1)
image_embeds = self.image_embedder(image_latents).image_embeds
image_embeds = image_embeds.to(device=device)
# 3. Prepare (dummy) text embeddings
if hasattr(self, "text_encoder") and self.text_encoder is not None:
(
prompt_embeds,
pooled_prompt_embeds,
_,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=1,
max_sequence_length=512,
lora_scale=None,
)
else:
if prompt is not None:
logger.warning(
"prompt input is ignored when text encoders are not loaded to the pipeline. "
"Make sure to explicitly load the text encoders to enable prompt input. "
)
# max_sequence_length is 512, t5 encoder hidden size is 4096
prompt_embeds = torch.zeros((batch_size, 512, 4096), device=device, dtype=image_embeds.dtype)
# pooled_prompt_embeds is 768, clip text encoder hidden size
pooled_prompt_embeds = torch.zeros((batch_size, 768), device=device, dtype=image_embeds.dtype)
# apply strength to image_embeds
image_embeds *= torch.tensor(strength, device=device, dtype=image_embeds.dtype)[:, None, None]
# scale & concatenate image and text embeddings
prompt_embeds = torch.cat([prompt_embeds, image_embeds], dim=1)
prompt_embeds *= torch.tensor(prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[:, None, None]
pooled_prompt_embeds *= torch.tensor(pooled_prompt_embeds_scale, device=device, dtype=image_embeds.dtype)[
:, None
]
# weighted sum
prompt_embeds = torch.sum(prompt_embeds, dim=0, keepdim=True)
pooled_prompt_embeds = torch.sum(pooled_prompt_embeds, dim=0, keepdim=True)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (prompt_embeds, pooled_prompt_embeds)
return FluxPriorReduxPipelineOutput(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds)