Kiss3DGen / text_to_mesh.py
JiantaoLin
initial commit
98bebfc
raw
history blame
9 kB
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from diffusers import HeunDiscreteScheduler
from diffusers import FluxPipeline
from pytorch_lightning import seed_everything
import os
import time
from models.lrm.utils.infer_util import save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.camera_util import get_flux_input_cameras
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
from utils.tool import NormalTransfer, load_mipmap
from utils.tool import get_background, get_render_cameras_video, render_frames
device = "cuda"
resolution = 512
save_dir = "./outputs"
normal_transfer = NormalTransfer()
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device)
isomer_radius = 4.5
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
# model initialization and loading
# flux
flux_pipe = FluxPipeline.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev", torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')
flux_pipe.to(device=device, dtype=torch.bfloat16)
generator = torch.Generator(device=device).manual_seed(10)
# lrm
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()
# Flux multi-view generation
def multi_view_rgb_normal_generation(prompt, save_path=None):
# generate multi-view images
with torch.no_grad():
image = flux_pipe(
prompt=prompt,
num_inference_steps=30,
guidance_scale=3.5,
num_images_per_prompt=1,
width=resolution*4,
height=resolution*2,
output_type='np',
generator=generator
).images
return image
# lrm reconstructions
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
images = image.unsqueeze(0).to(device)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
# breakpoint()
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if if_save_video:
video_path_idx = os.path.join(save_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos = get_render_cameras_video(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=True,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=20,
is_flexicubes=True,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
return vertices, faces
def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
if local_normal_images.min() >= 0:
local_normal = local_normal_images.float() * 2 - 1
else:
local_normal = local_normal_images.float()
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
global_normal[...,0] *= -1
global_normal = (global_normal + 1) / 2
global_normal = global_normal.permute(0, 3, 1, 2)
return global_normal
def main():
end = time.time()
fix_prompt = 'a grid of 2x4 multi-view image. elevation 5. white background.'
# user prompt
prompt = "a owl wearing a hat."
save_dir_path = os.path.join(save_dir, prompt.split(".")[0].replace(" ", "_"))
os.makedirs(save_dir_path, exist_ok=True)
prompt = fix_prompt+" "+prompt
# generate multi-view images
rgb_normal_grid = multi_view_rgb_normal_generation(prompt)
# lrm reconstructions
images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
rgb_multi_view = images[:4, :3, :, :]
normal_multi_view = images[4:, :3, :, :]
multi_view_mask = get_background(normal_multi_view)
rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device)
vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=False)
# local normal to global normal
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
global_normal = global_normal.permute(0,2,3,1)
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
vertices = torch.from_numpy(vertices).to(device)
faces = torch.from_numpy(faces).to(device)
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
# global_normal: B,H,W,3
# multi_view_mask: B,H,W
# rgb_multi_view: B,H,W,3
meshes = reconstruction(
normal_pils=global_normal,
masks=multi_view_mask,
weights=isomer_geo_weights,
fov=30,
radius=isomer_radius,
camera_angles_azi=isomer_azimuths,
camera_angles_ele=isomer_elevations,
expansion_weight_stage1=0.1,
init_type="file",
init_verts=vertices,
init_faces=faces,
stage1_steps=0,
stage2_steps=50,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
)
save_glb_addr = projection(
meshes,
masks=multi_view_mask,
images=rgb_multi_view,
azimuths=isomer_azimuths,
elevations=isomer_elevations,
weights=isomer_color_weights,
fov=30,
radius=isomer_radius,
save_dir=f"{save_dir_path}/ISOMER/",
)
print(f'saved to {save_glb_addr}')
print(f"Time elapsed: {time.time() - end:.2f}s")
if __name__ == '__main__':
main()