Kiss3DGen / image_to_mesh.py
JiantaoLin
initial commit
98bebfc
raw
history blame
18.6 kB
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from transformers import AutoProcessor, AutoModelForCausalLM
import rembg
from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler
from pytorch_lightning import seed_everything
import os
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
from models.lrm.utils.infer_util import remove_background, resize_foreground, save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.camera_util import get_zero123plus_input_cameras, get_custom_zero123plus_input_cameras, get_flux_input_cameras
from utils.tool import NormalTransfer, get_render_cameras_frames, load_mipmap
from utils.tool import get_background, get_render_cameras_video, render_frames
import time
device = "cuda"
resolution = 512
save_dir = "./outputs"
zero123plus_diffusion_steps = 75
normal_transfer = NormalTransfer()
rembg_session = rembg.new_session()
isomer_azimuths = torch.from_numpy(np.array([270, 0, 90, 180])).to(device)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).to(device)
isomer_radius = 4.1
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
# seed_everything(42)
# model initialization and loading
# flux
print('==> Loading Flux model ...')
flux_base_model_pth = "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev"
flux_controlnet = FluxControlNetModel.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/flux_controlnets/FLUX.1-dev-ControlNet-Union-Pro")
flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')
flux_pipe.to(device=device, dtype=torch.bfloat16)
generator = torch.Generator(device=device).manual_seed(0)
# lrm
print('==> Loading LRM model ...')
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()
# zero123++
print('==> Loading diffusion model ...')
zero123plus_pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="./models/zero123plus",
torch_dtype=torch.float16,
)
zero123plus_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
zero123plus_pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = "./checkpoint/zero123++/flexgen_19w.ckpt"
state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
zero123plus_pipeline = zero123plus_pipeline.to(device)
# unet_ckpt_path = "checkpoint/zero123++/diffusion_pytorch_model.bin"
# state_dict = torch.load(unet_ckpt_path, map_location='cpu')
# zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
# zero123plus_pipeline = zero123plus_pipeline.to(device)
# florence
caption_model = AutoModelForCausalLM.from_pretrained(
"/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", torch_dtype=torch.bfloat16, trust_remote_code=True,
).to(device)
caption_processor = AutoProcessor.from_pretrained("/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", trust_remote_code=True)
# Flux multi-view generation
def multi_view_rgb_normal_generation_with_controlnet(prompt, image, strength=1.0,
control_image=[],
control_mode=[],
control_guidance_start=None,
control_guidance_end=None,
controlnet_conditioning_scale=None,
lora_scale=1.0
):
control_mode_dict = {
'canny': 0,
'tile': 1,
'depth': 2,
'blur': 3,
'pose': 4,
'gray': 5,
'lq': 6,
} # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
hparam_dict = {
'prompt': prompt,
'image': image,
'strength': strength,
'num_inference_steps': 30,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': resolution*4,
'height': resolution*2,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
# append controlnet hparams
if len(control_image) > 0:
assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
ctrl_hparams = {
'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
'control_image': control_image,
'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
}
hparam_dict.update(ctrl_hparams)
# generate multi-view images
with torch.no_grad():
image = flux_pipe(
**hparam_dict
).images
return image
# captioning
def run_captioning(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16
if isinstance(image, str): # If image is a file path
image = Image.open(image).convert("RGB")
prompt = "<MORE_DETAILED_CAPTION>"
inputs = caption_processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
# print(f"inputs {inputs}")
generated_ids = caption_model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = caption_processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
# print(f"parsed_answer = {parsed_answer}")
caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
return caption_text
# zero123++ multi-view generation
def multi_view_rgb_generation(cond_img):
# generate multi-view images
with torch.no_grad():
output_image = zero123plus_pipeline(
cond_img,
num_inference_steps=zero123plus_diffusion_steps,
width=resolution*2,
height=resolution*2,
).images[0]
return output_image
# lrm reconstructions
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False, render_azimuths=None, render_elevations=None, render_radius=None, render_fov=30):
images = image.unsqueeze(0).to(device)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
# breakpoint()
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if if_save_video:
video_path_idx = os.path.join(save_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos = get_render_cameras_video(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=True,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=20,
is_flexicubes=True,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
# breakpoint()
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
if render_azimuths is not None and render_elevations is not None and render_radius is not None:
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos, identity_mv = get_render_cameras_frames(
batch_size=1,
radius=render_radius,
azimuths=render_azimuths,
elevations=render_elevations,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
render_mv = all_mv,
local_normal=True,
identity_mv=identity_mv,
)
else:
normals = None
frames = None
albedos = None
return vertices, faces, normals, frames, albedos
def transform_normal(input_normal, azimuths_deg, elevations_deg, radius=4.5, is_global_to_local=False):
"""
input_normal: in range [-1, 1], shape (b c h w)
"""
input_normal = input_normal.permute(0, 2, 3, 1).cpu()
azimuths_deg = np.array(azimuths_deg)
elevations_deg = np.array(elevations_deg)
if is_global_to_local:
local_normal = normal_transfer.trans_global_2_local(input_normal, azimuths_deg, elevations_deg)
return local_normal.permute(0, 3, 1, 2)
else:
global_normal = normal_transfer.trans_local_2_global(input_normal, azimuths_deg, elevations_deg, radius=radius, for_lotus=False)
global_normal[..., 0] *= -1
return global_normal.permute(0, 3, 1, 2)
def local_normal_global_transform(local_normal_images,azimuths_deg,elevations_deg):
if local_normal_images.min() >= 0:
local_normal = local_normal_images.float() * 2 - 1
else:
local_normal = local_normal_images.float()
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
global_normal[...,0] *= -1
global_normal = (global_normal + 1) / 2
global_normal = global_normal.permute(0, 3, 1, 2)
return global_normal
def main():
image_pth = "examples/蓝色小怪物.webp"
save_dir_path = os.path.join(save_dir, image_pth.split("/")[-1].split(".")[0])
os.makedirs(save_dir_path, exist_ok=True)
input_image = Image.open(image_pth)
# if not args.no_rembg:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
# generate caption
image_caption = run_captioning(image_pth)
# generate multi-view images
output_image = multi_view_rgb_generation(input_image)
# lrm reconstructions
rgb_multi_view = np.asarray(output_image, dtype=np.float32) / 255.0
rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2) # (8, 3, 512, 512)
input_cameras = get_custom_zero123plus_input_cameras(batch_size=1, radius=3.5, fov=30).to(device)
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm',
export_texmap=False, if_save_video=False, render_azimuths=isomer_azimuths,
render_elevations=isomer_elevations, render_radius=isomer_radius, render_fov=30)
vertices = torch.from_numpy(vertices).to(device)
faces = torch.from_numpy(faces).to(device)
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
# lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_multi_view[[3,0,1,2]].cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
# rgb_multi_view[[3,0,1,2]] : (B,3,H,W)
# lrm_multi_view_normals : (B,3,H,W)
# combined_images = 0.5 * rgb_multi_view[[3,0,1,2]].cpu() + 0.5 * (lrm_multi_view_normals.cpu() + 1) / 2
# torchvision.utils.save_image(combined_images, os.path.join("debug_output", 'combined.png'))
# breakpoint()
# Use the low-quality controlnet by default, feel free to try the others
control_image = [lrm_3D_bundle_image * 2 - 1]
control_mode = ['tile']
control_guidance_start = [0.0]
control_guidance_end = [0.3]
controlnet_conditioning_scale = [0.8]
flux_pipe.controlnet = FluxMultiControlNetModel([flux_controlnet for _ in control_mode])
# breakpoint()
rgb_normal_grid = multi_view_rgb_normal_generation_with_controlnet(
prompt= ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', image_caption]),
image=lrm_3D_bundle_image,
strength=0.6,
control_image=control_image,
control_mode=control_mode,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
controlnet_conditioning_scale=controlnet_conditioning_scale,
lora_scale=1.0
) # noted that rgb_normal_grid is a (b, h, w, c) numpy array
rgb_normal_grid = torch.from_numpy(rgb_normal_grid).contiguous().float()
rgb_normal_grid = rearrange(rgb_normal_grid.squeeze(0), '(n h) (m w) c-> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
rgb_multi_view = rgb_normal_grid[:4, :3, :, :].cuda()
normal_multi_view = rgb_normal_grid[4:, :3, :, :].cuda()
multi_view_mask = get_background(normal_multi_view).cuda()
rgb_multi_view = rgb_multi_view * multi_view_mask + (1-multi_view_mask)
# local normal to global normal
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1).cpu(), isomer_azimuths, isomer_elevations).cuda()
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
global_normal = global_normal.permute(0,2,3,1)
multi_view_mask = multi_view_mask.squeeze(1)
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
# global_normal: B,H,W,3
# multi_view_mask: B,H,W
# rgb_multi_view: B,H,W,3
meshes = reconstruction(
normal_pils=global_normal,
masks=multi_view_mask,
weights=isomer_geo_weights,
fov=30,
radius=isomer_radius,
camera_angles_azi=isomer_azimuths,
camera_angles_ele=isomer_elevations,
expansion_weight_stage1=0.1,
init_type="file",
init_verts=vertices,
init_faces=faces,
stage1_steps=0,
stage2_steps=50,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
)
save_glb_addr = projection(
meshes=meshes,
masks=multi_view_mask,
images=rgb_multi_view,
azimuths=isomer_azimuths,
elevations=isomer_elevations,
weights=isomer_color_weights,
fov=30,
radius=isomer_radius,
save_dir=f"{save_dir_path}/ISOMER/",
)
print(f'saved to {save_glb_addr}')
if __name__ == '__main__':
main()