|
import os |
|
from einops import rearrange |
|
from omegaconf import OmegaConf |
|
import torch |
|
import numpy as np |
|
import trimesh |
|
import torchvision |
|
import torch.nn.functional as F |
|
from PIL import Image |
|
from torchvision import transforms |
|
from torchvision.transforms import v2 |
|
from diffusers import HeunDiscreteScheduler |
|
from diffusers import FluxPipeline |
|
from pytorch_lightning import seed_everything |
|
import os |
|
import time |
|
from models.lrm.utils.infer_util import save_video |
|
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl |
|
from models.lrm.utils.render_utils import rotate_x, rotate_y |
|
from models.lrm.utils.train_util import instantiate_from_config |
|
from models.lrm.utils.camera_util import get_flux_input_cameras |
|
from models.ISOMER.reconstruction_func import reconstruction |
|
from models.ISOMER.projection_func import projection |
|
from utils.tool import NormalTransfer, load_mipmap |
|
from utils.tool import get_background, get_render_cameras_video, render_frames |
|
|
|
device = "cuda" |
|
resolution = 512 |
|
save_dir = "./outputs" |
|
normal_transfer = NormalTransfer() |
|
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device) |
|
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device) |
|
isomer_radius = 4.5 |
|
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device) |
|
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device) |
|
|
|
|
|
|
|
flux_pipe = FluxPipeline.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev", torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16) |
|
flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors') |
|
|
|
flux_pipe.to(device=device, dtype=torch.bfloat16) |
|
generator = torch.Generator(device=device).manual_seed(10) |
|
|
|
|
|
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml") |
|
model_config = config.model_config |
|
infer_config = config.infer_config |
|
model = instantiate_from_config(model_config) |
|
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt" |
|
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] |
|
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')} |
|
model.load_state_dict(state_dict, strict=True) |
|
|
|
model = model.to(device) |
|
model.init_flexicubes_geometry(device, fovy=50.0) |
|
model = model.eval() |
|
|
|
|
|
def multi_view_rgb_normal_generation(prompt, save_path=None): |
|
|
|
with torch.no_grad(): |
|
image = flux_pipe( |
|
prompt=prompt, |
|
num_inference_steps=30, |
|
guidance_scale=3.5, |
|
num_images_per_prompt=1, |
|
width=resolution*4, |
|
height=resolution*2, |
|
output_type='np', |
|
generator=generator |
|
).images |
|
return image |
|
|
|
|
|
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False): |
|
images = image.unsqueeze(0).to(device) |
|
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
with torch.no_grad(): |
|
|
|
planes = model.forward_planes(images, input_cameras) |
|
|
|
mesh_path_idx = os.path.join(save_path, f'{name}.obj') |
|
|
|
mesh_out = model.extract_mesh( |
|
planes, |
|
use_texture_map=export_texmap, |
|
**infer_config, |
|
) |
|
if export_texmap: |
|
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out |
|
save_obj_with_mtl( |
|
vertices.data.cpu().numpy(), |
|
uvs.data.cpu().numpy(), |
|
faces.data.cpu().numpy(), |
|
mesh_tex_idx.data.cpu().numpy(), |
|
tex_map.permute(1, 2, 0).data.cpu().numpy(), |
|
mesh_path_idx, |
|
) |
|
else: |
|
vertices, faces, vertex_colors = mesh_out |
|
save_obj(vertices, faces, vertex_colors, mesh_path_idx) |
|
print(f"Mesh saved to {mesh_path_idx}") |
|
|
|
render_size = 512 |
|
if if_save_video: |
|
video_path_idx = os.path.join(save_path, f'{name}.mp4') |
|
render_size = infer_config.render_resolution |
|
ENV = load_mipmap("models/lrm/env_mipmap/6") |
|
materials = (0.0,0.9) |
|
|
|
all_mv, all_mvp, all_campos = get_render_cameras_video( |
|
batch_size=1, |
|
M=240, |
|
radius=4.5, |
|
elevation=(90, 60.0), |
|
is_flexicubes=True, |
|
fov=30 |
|
) |
|
|
|
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames( |
|
model, |
|
planes, |
|
render_cameras=all_mvp, |
|
camera_pos=all_campos, |
|
env=ENV, |
|
materials=materials, |
|
render_size=render_size, |
|
chunk_size=20, |
|
is_flexicubes=True, |
|
) |
|
normals = (torch.nn.functional.normalize(normals) + 1) / 2 |
|
normals = normals * alphas + (1-alphas) |
|
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3) |
|
|
|
save_video( |
|
all_frames, |
|
video_path_idx, |
|
fps=30, |
|
) |
|
print(f"Video saved to {video_path_idx}") |
|
|
|
return vertices, faces |
|
|
|
|
|
def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg): |
|
if local_normal_images.min() >= 0: |
|
local_normal = local_normal_images.float() * 2 - 1 |
|
else: |
|
local_normal = local_normal_images.float() |
|
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False) |
|
global_normal[...,0] *= -1 |
|
global_normal = (global_normal + 1) / 2 |
|
global_normal = global_normal.permute(0, 3, 1, 2) |
|
return global_normal |
|
|
|
def main(): |
|
end = time.time() |
|
fix_prompt = 'a grid of 2x4 multi-view image. elevation 5. white background.' |
|
|
|
prompt = "a owl wearing a hat." |
|
save_dir_path = os.path.join(save_dir, prompt.split(".")[0].replace(" ", "_")) |
|
os.makedirs(save_dir_path, exist_ok=True) |
|
prompt = fix_prompt+" "+prompt |
|
|
|
rgb_normal_grid = multi_view_rgb_normal_generation(prompt) |
|
|
|
images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float() |
|
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4) |
|
rgb_multi_view = images[:4, :3, :, :] |
|
normal_multi_view = images[4:, :3, :, :] |
|
multi_view_mask = get_background(normal_multi_view) |
|
rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask) |
|
input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device) |
|
vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=False) |
|
|
|
|
|
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations) |
|
global_normal = global_normal * multi_view_mask + (1-multi_view_mask) |
|
|
|
global_normal = global_normal.permute(0,2,3,1) |
|
rgb_multi_view = rgb_multi_view.permute(0,2,3,1) |
|
multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1) |
|
vertices = torch.from_numpy(vertices).to(device) |
|
faces = torch.from_numpy(faces).to(device) |
|
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3] |
|
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3] |
|
|
|
|
|
|
|
|
|
|
|
meshes = reconstruction( |
|
normal_pils=global_normal, |
|
masks=multi_view_mask, |
|
weights=isomer_geo_weights, |
|
fov=30, |
|
radius=isomer_radius, |
|
camera_angles_azi=isomer_azimuths, |
|
camera_angles_ele=isomer_elevations, |
|
expansion_weight_stage1=0.1, |
|
init_type="file", |
|
init_verts=vertices, |
|
init_faces=faces, |
|
stage1_steps=0, |
|
stage2_steps=50, |
|
start_edge_len_stage1=0.1, |
|
end_edge_len_stage1=0.02, |
|
start_edge_len_stage2=0.02, |
|
end_edge_len_stage2=0.005, |
|
) |
|
|
|
|
|
save_glb_addr = projection( |
|
meshes, |
|
masks=multi_view_mask, |
|
images=rgb_multi_view, |
|
azimuths=isomer_azimuths, |
|
elevations=isomer_elevations, |
|
weights=isomer_color_weights, |
|
fov=30, |
|
radius=isomer_radius, |
|
save_dir=f"{save_dir_path}/ISOMER/", |
|
) |
|
print(f'saved to {save_glb_addr}') |
|
print(f"Time elapsed: {time.time() - end:.2f}s") |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|