|
|
|
from __future__ import annotations |
|
|
|
import argparse |
|
import os |
|
from contextlib import nullcontext |
|
|
|
import torch |
|
from accelerate import init_empty_weights |
|
from huggingface_hub import hf_hub_download, snapshot_download |
|
from termcolor import colored |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderDC, |
|
DPMSolverMultistepScheduler, |
|
FlowMatchEulerDiscreteScheduler, |
|
SanaPipeline, |
|
SanaTransformer2DModel, |
|
) |
|
from diffusers.models.modeling_utils import load_model_dict_into_meta |
|
from diffusers.utils.import_utils import is_accelerate_available |
|
|
|
|
|
CTX = init_empty_weights if is_accelerate_available else nullcontext |
|
|
|
ckpt_ids = [ |
|
"Efficient-Large-Model/Sana_1600M_1024px_MultiLing/checkpoints/Sana_1600M_1024px_MultiLing.pth", |
|
"Efficient-Large-Model/Sana_1600M_1024px_BF16/checkpoints/Sana_1600M_1024px_BF16.pth", |
|
"Efficient-Large-Model/Sana_1600M_512px_MultiLing/checkpoints/Sana_1600M_512px_MultiLing.pth", |
|
"Efficient-Large-Model/Sana_1600M_1024px/checkpoints/Sana_1600M_1024px.pth", |
|
"Efficient-Large-Model/Sana_1600M_512px/checkpoints/Sana_1600M_512px.pth", |
|
"Efficient-Large-Model/Sana_600M_1024px/checkpoints/Sana_600M_1024px_MultiLing.pth", |
|
"Efficient-Large-Model/Sana_600M_512px/checkpoints/Sana_600M_512px_MultiLing.pth", |
|
] |
|
|
|
|
|
|
|
def main(args): |
|
cache_dir_path = os.path.expanduser("~/.cache/huggingface/hub") |
|
|
|
if args.orig_ckpt_path is None or args.orig_ckpt_path in ckpt_ids: |
|
ckpt_id = args.orig_ckpt_path or ckpt_ids[0] |
|
snapshot_download( |
|
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", |
|
cache_dir=cache_dir_path, |
|
repo_type="model", |
|
) |
|
file_path = hf_hub_download( |
|
repo_id=f"{'/'.join(ckpt_id.split('/')[:2])}", |
|
filename=f"{'/'.join(ckpt_id.split('/')[2:])}", |
|
cache_dir=cache_dir_path, |
|
repo_type="model", |
|
) |
|
else: |
|
file_path = args.orig_ckpt_path |
|
|
|
print(colored(f"Loading checkpoint from {file_path}", "green", attrs=["bold"])) |
|
all_state_dict = torch.load(file_path, weights_only=True) |
|
state_dict = all_state_dict.pop("state_dict") |
|
converted_state_dict = {} |
|
|
|
|
|
converted_state_dict["patch_embed.proj.weight"] = state_dict.pop("x_embedder.proj.weight") |
|
converted_state_dict["patch_embed.proj.bias"] = state_dict.pop("x_embedder.proj.bias") |
|
|
|
|
|
converted_state_dict["caption_projection.linear_1.weight"] = state_dict.pop("y_embedder.y_proj.fc1.weight") |
|
converted_state_dict["caption_projection.linear_1.bias"] = state_dict.pop("y_embedder.y_proj.fc1.bias") |
|
converted_state_dict["caption_projection.linear_2.weight"] = state_dict.pop("y_embedder.y_proj.fc2.weight") |
|
converted_state_dict["caption_projection.linear_2.bias"] = state_dict.pop("y_embedder.y_proj.fc2.bias") |
|
|
|
|
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.weight"] = state_dict.pop( |
|
"t_embedder.mlp.0.weight" |
|
) |
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_1.bias"] = state_dict.pop("t_embedder.mlp.0.bias") |
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.weight"] = state_dict.pop( |
|
"t_embedder.mlp.2.weight" |
|
) |
|
converted_state_dict["time_embed.emb.timestep_embedder.linear_2.bias"] = state_dict.pop("t_embedder.mlp.2.bias") |
|
|
|
|
|
converted_state_dict["time_embed.linear.weight"] = state_dict.pop("t_block.1.weight") |
|
converted_state_dict["time_embed.linear.bias"] = state_dict.pop("t_block.1.bias") |
|
|
|
|
|
converted_state_dict["caption_norm.weight"] = state_dict.pop("attention_y_norm.weight") |
|
|
|
flow_shift = 3.0 |
|
if args.model_type == "SanaMS_1600M_P1_D20": |
|
layer_num = 20 |
|
elif args.model_type == "SanaMS_600M_P1_D28": |
|
layer_num = 28 |
|
else: |
|
raise ValueError(f"{args.model_type} is not supported.") |
|
|
|
for depth in range(layer_num): |
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.scale_shift_table"] = state_dict.pop( |
|
f"blocks.{depth}.scale_shift_table" |
|
) |
|
|
|
|
|
|
|
q, k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.attn.qkv.weight"), 3, dim=0) |
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_q.weight"] = q |
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_k.weight"] = k |
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_v.weight"] = v |
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.weight"] = state_dict.pop( |
|
f"blocks.{depth}.attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.attn1.to_out.0.bias"] = state_dict.pop( |
|
f"blocks.{depth}.attn.proj.bias" |
|
) |
|
|
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.weight"] = state_dict.pop( |
|
f"blocks.{depth}.mlp.inverted_conv.conv.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_inverted.bias"] = state_dict.pop( |
|
f"blocks.{depth}.mlp.inverted_conv.conv.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.weight"] = state_dict.pop( |
|
f"blocks.{depth}.mlp.depth_conv.conv.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_depth.bias"] = state_dict.pop( |
|
f"blocks.{depth}.mlp.depth_conv.conv.bias" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.ff.conv_point.weight"] = state_dict.pop( |
|
f"blocks.{depth}.mlp.point_conv.conv.weight" |
|
) |
|
|
|
|
|
q = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.weight") |
|
q_bias = state_dict.pop(f"blocks.{depth}.cross_attn.q_linear.bias") |
|
k, v = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.weight"), 2, dim=0) |
|
k_bias, v_bias = torch.chunk(state_dict.pop(f"blocks.{depth}.cross_attn.kv_linear.bias"), 2, dim=0) |
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.weight"] = q |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_q.bias"] = q_bias |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.weight"] = k |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_k.bias"] = k_bias |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.weight"] = v |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_v.bias"] = v_bias |
|
|
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.weight"] = state_dict.pop( |
|
f"blocks.{depth}.cross_attn.proj.weight" |
|
) |
|
converted_state_dict[f"transformer_blocks.{depth}.attn2.to_out.0.bias"] = state_dict.pop( |
|
f"blocks.{depth}.cross_attn.proj.bias" |
|
) |
|
|
|
|
|
converted_state_dict["proj_out.weight"] = state_dict.pop("final_layer.linear.weight") |
|
converted_state_dict["proj_out.bias"] = state_dict.pop("final_layer.linear.bias") |
|
converted_state_dict["scale_shift_table"] = state_dict.pop("final_layer.scale_shift_table") |
|
|
|
|
|
with CTX(): |
|
transformer = SanaTransformer2DModel( |
|
in_channels=32, |
|
out_channels=32, |
|
num_attention_heads=model_kwargs[args.model_type]["num_attention_heads"], |
|
attention_head_dim=model_kwargs[args.model_type]["attention_head_dim"], |
|
num_layers=model_kwargs[args.model_type]["num_layers"], |
|
num_cross_attention_heads=model_kwargs[args.model_type]["num_cross_attention_heads"], |
|
cross_attention_head_dim=model_kwargs[args.model_type]["cross_attention_head_dim"], |
|
cross_attention_dim=model_kwargs[args.model_type]["cross_attention_dim"], |
|
caption_channels=2304, |
|
mlp_ratio=2.5, |
|
attention_bias=False, |
|
sample_size=args.image_size // 32, |
|
patch_size=1, |
|
norm_elementwise_affine=False, |
|
norm_eps=1e-6, |
|
) |
|
|
|
if is_accelerate_available(): |
|
load_model_dict_into_meta(transformer, converted_state_dict) |
|
else: |
|
transformer.load_state_dict(converted_state_dict, strict=True, assign=True) |
|
|
|
try: |
|
state_dict.pop("y_embedder.y_embedding") |
|
state_dict.pop("pos_embed") |
|
except KeyError: |
|
print("y_embedder.y_embedding or pos_embed not found in the state_dict") |
|
|
|
assert len(state_dict) == 0, f"State dict is not empty, {state_dict.keys()}" |
|
|
|
num_model_params = sum(p.numel() for p in transformer.parameters()) |
|
print(f"Total number of transformer parameters: {num_model_params}") |
|
|
|
transformer = transformer.to(weight_dtype) |
|
|
|
if not args.save_full_pipeline: |
|
print( |
|
colored( |
|
f"Only saving transformer model of {args.model_type}. " |
|
f"Set --save_full_pipeline to save the whole SanaPipeline", |
|
"green", |
|
attrs=["bold"], |
|
) |
|
) |
|
transformer.save_pretrained( |
|
os.path.join(args.dump_path, "transformer"), safe_serialization=True, max_shard_size="5GB", variant=variant |
|
) |
|
else: |
|
print(colored(f"Saving the whole SanaPipeline containing {args.model_type}", "green", attrs=["bold"])) |
|
|
|
ae = AutoencoderDC.from_pretrained("mit-han-lab/dc-ae-f32c32-sana-1.0-diffusers", torch_dtype=torch.float32) |
|
|
|
|
|
text_encoder_model_path = "google/gemma-2-2b-it" |
|
tokenizer = AutoTokenizer.from_pretrained(text_encoder_model_path) |
|
tokenizer.padding_side = "right" |
|
text_encoder = AutoModelForCausalLM.from_pretrained( |
|
text_encoder_model_path, torch_dtype=torch.bfloat16 |
|
).get_decoder() |
|
|
|
|
|
if args.scheduler_type == "flow-dpm_solver": |
|
scheduler = DPMSolverMultistepScheduler( |
|
flow_shift=flow_shift, |
|
use_flow_sigmas=True, |
|
prediction_type="flow_prediction", |
|
) |
|
elif args.scheduler_type == "flow-euler": |
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=flow_shift) |
|
else: |
|
raise ValueError(f"Scheduler type {args.scheduler_type} is not supported") |
|
|
|
pipe = SanaPipeline( |
|
tokenizer=tokenizer, |
|
text_encoder=text_encoder, |
|
transformer=transformer, |
|
vae=ae, |
|
scheduler=scheduler, |
|
) |
|
pipe.save_pretrained(args.dump_path, safe_serialization=True, max_shard_size="5GB", variant=variant) |
|
|
|
|
|
DTYPE_MAPPING = { |
|
"fp32": torch.float32, |
|
"fp16": torch.float16, |
|
"bf16": torch.bfloat16, |
|
} |
|
|
|
VARIANT_MAPPING = { |
|
"fp32": None, |
|
"fp16": "fp16", |
|
"bf16": "bf16", |
|
} |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--orig_ckpt_path", default=None, type=str, required=False, help="Path to the checkpoint to convert." |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
default=1024, |
|
type=int, |
|
choices=[512, 1024], |
|
required=False, |
|
help="Image size of pretrained model, 512 or 1024.", |
|
) |
|
parser.add_argument( |
|
"--model_type", default="SanaMS_1600M_P1_D20", type=str, choices=["SanaMS_1600M_P1_D20", "SanaMS_600M_P1_D28"] |
|
) |
|
parser.add_argument( |
|
"--scheduler_type", default="flow-dpm_solver", type=str, choices=["flow-dpm_solver", "flow-euler"] |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output pipeline.") |
|
parser.add_argument("--save_full_pipeline", action="store_true", help="save all the pipelien elemets in one.") |
|
parser.add_argument("--dtype", default="fp32", type=str, choices=["fp32", "fp16", "bf16"], help="Weight dtype.") |
|
|
|
args = parser.parse_args() |
|
|
|
model_kwargs = { |
|
"SanaMS_1600M_P1_D20": { |
|
"num_attention_heads": 70, |
|
"attention_head_dim": 32, |
|
"num_cross_attention_heads": 20, |
|
"cross_attention_head_dim": 112, |
|
"cross_attention_dim": 2240, |
|
"num_layers": 20, |
|
}, |
|
"SanaMS_600M_P1_D28": { |
|
"num_attention_heads": 36, |
|
"attention_head_dim": 32, |
|
"num_cross_attention_heads": 16, |
|
"cross_attention_head_dim": 72, |
|
"cross_attention_dim": 1152, |
|
"num_layers": 28, |
|
}, |
|
} |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
weight_dtype = DTYPE_MAPPING[args.dtype] |
|
variant = VARIANT_MAPPING[args.dtype] |
|
|
|
main(args) |
|
|