File size: 9,302 Bytes
98bebfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os
import numpy as np
import torch
from PIL import Image
from pytorch3d.structures import Meshes
from pytorch3d.renderer import TexturesVertex
from ..scripts.fast_geo import fast_geo, create_sphere, create_box
from ..scripts.project_mesh import get_cameras_list_azi_ele
from ..mesh_reconstruction.recon import reconstruct_stage1
from ..mesh_reconstruction.refine import run_mesh_refine
from ..mesh_reconstruction.func import make_star_cameras_orthographic, make_star_cameras_perspective
from ..data.utils import (
simple_remove_bkg_normal,
load_glb,
load_obj_with_verts_faces)
from ..scripts.utils import (
to_pyml_mesh,
simple_clean_mesh,
normal_rotation_img2img_c2w,
rotate_normal_R,
get_rotation_matrix_azi_ele,
manage_elevation_azimuth)
@torch.enable_grad()
def reconstruction_pipe(normal_pils,
rotation_angles_azi,
rotation_angles_ele,
front_index=0,
back_index=2,
side_index=1,
weights=None,
expansion_weight=0.1,
expansion_weight_stage2=0.0,
init_type="ball",
sphere_r=None, # only used if init_type=="ball"
box_width=1.0, # only used if init_type=="box"
box_length=1.0, # only used if init_type=="box"
box_height=1.0, # only used if init_type=="box"
init_verts=None,
init_faces=None,
init_mesh_from_file="",
stage1_steps=200,
stage2_steps=200,
projection_type="orthographic",
fovy=None,
radius=None,
ortho_dist=1.1,
camera_angles_azi=None,
camera_angles_ele=None,
rm_bkg=False,
rm_bkg_with_rembg=False, # only used if rm_bkg
normal_rotation_R=None,
train_stage1=True,
train_stage2=True,
use_remesh_stage1=True,
use_remesh_stage2=True,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
):
assert projection_type in ['perspective', 'orthographic'], f"projection_type ({projection_type}) should be one of ['perspective', 'orthographic']"
if stage1_steps == 0:
train_stage1 = False
if stage2_steps == 0:
train_stage2 = False
if normal_rotation_R is not None:
assert normal_rotation_R.shape[-2] == 3 and normal_rotation_R.shape[-1] == 3
assert len(normal_rotation_R.shape) == 2
normal_rotation_R = normal_rotation_R.float()
camera_angles_azi = camera_angles_azi.float()
camera_angles_ele = camera_angles_ele.float()
camera_angles_ele, camera_angles_azi = manage_elevation_azimuth(camera_angles_ele, camera_angles_azi)
if init_type in ["std", "thin"]:
assert camera_angles_azi[front_index]%360==0, f"the camera_angles_azi associated with front image (index {front_index}) should be 0 not {camera_angles_azi[front_index]}"
assert camera_angles_azi[back_index]%360==180, f"the camera_angles_azi associated with back image (index {back_index}) should be 180 not {camera_angles_azi[back_index]}"
assert camera_angles_azi[side_index]%360==90, f"the camera_angles_azi associated with left side image (index {side_index}) should be 90, not {camera_angles_azi[back_index]}"
if rm_bkg:
if rm_bkg_with_rembg:
os.environ["OMP_NUM_THREADS"] = '8'
normal_pils = simple_remove_bkg_normal(normal_pils,rm_bkg_with_rembg)
if rotation_angles_azi is not None:
rotation_angles_azi = -rotation_angles_azi.float()
rotation_angles_ele = rotation_angles_ele.float()
rotation_angles_ele, rotation_angles_azi = manage_elevation_azimuth(rotation_angles_ele, rotation_angles_azi)
assert len(normal_pils) == len(rotation_angles_azi), f'len(normal_pils) ({len(normal_pils)}) != len(rotation_angles_azi) ({len(rotation_angles_azi)})'
if rotation_angles_ele is None:
rotation_angles_ele = [0] * len(normal_pils)
normal_pils_rotated = []
for i in range(len(normal_pils)):
c2w_R = get_rotation_matrix_azi_ele(rotation_angles_azi[i], rotation_angles_ele[i])
rotated_ = normal_rotation_img2img_c2w(normal_pils[i], c2w=c2w_R)
normal_pils_rotated.append(rotated_)
normal_pils = normal_pils_rotated
if normal_rotation_R is not None:
normal_pils_rotated = []
for i in range(len(normal_pils)):
rotated_ = rotate_normal_R(normal_pils[i], normal_rotation_R, save_addr="", device="cuda")
normal_pils_rotated.append(rotated_)
normal_pils = normal_pils_rotated
normal_stg1 = [img for img in normal_pils]
if init_type in ['thin', 'std']:
front_ = normal_stg1[front_index]
back_ = normal_stg1[back_index]
side_ = normal_stg1[side_index]
meshes, depth_front, depth_back, mesh_front, mesh_back = fast_geo(front_, back_, side_, init_type=init_type, return_depth_and_sep_mesh=True)
elif init_type in ["ball", "box"]:
if init_type == "ball":
assert sphere_r is not None, f"sphere_r ({sphere_r}) should not be None when init_type is 'ball'"
meshes = create_sphere(sphere_r)
if init_type == "box":
assert box_width is not None and box_length is not None and box_height is not None, f"box_width ({box_width}), box_length ({box_length}), and box_height ({box_height}) should not be None when init_type is 'box'"
meshes = create_box(width=box_width, length=box_length, height=box_height)
# add texture just in case
num_meshes = len(meshes)
num_verts_per_mesh = meshes.verts_packed().shape[0] // num_meshes
black_texture = torch.zeros((num_meshes, num_verts_per_mesh, 3), device="cuda")
textures = TexturesVertex(verts_features=black_texture)
meshes.textures = textures
elif init_type == "file":
assert init_mesh_from_file or (init_verts is not None and init_faces is not None), f"init_mesh_from_file ({init_mesh_from_file}) should not be None when init_type is 'file', else init_verts and init_faces should not be None"
if init_verts is not None and init_faces is not None:
meshes = Meshes(verts=[init_verts], faces=[init_faces]).to('cuda')
elif init_mesh_from_file.endswith('.glb'):
meshes = load_glb(init_mesh_from_file).to('cuda')
else:
meshes = load_obj_with_verts_faces(init_mesh_from_file).to('cuda')
# add texture just in case
num_meshes = len(meshes)
num_verts_per_mesh = meshes.verts_packed().shape[0] // num_meshes
black_texture = torch.zeros((num_meshes, num_verts_per_mesh, 3), device="cuda")
textures = TexturesVertex(verts_features=black_texture)
meshes.textures = textures
if projection_type == 'perspective':
assert fovy is not None and radius is not None, f"fovy ({fovy}) and radius ({radius}) should not be None when projection_type is 'perspective'"
cameras = get_cameras_list_azi_ele(camera_angles_azi, camera_angles_ele, fov_in_degrees=fovy,device="cuda", dist=radius, cam_type='fov')
elif projection_type == 'orthographic':
cameras = get_cameras_list_azi_ele(camera_angles_azi, camera_angles_ele, fov_in_degrees=fovy, device="cuda", focal=1., dist=ortho_dist, cam_type='orthographic')
vertices, faces = meshes.verts_list()[0], meshes.faces_list()[0]
render_camera_angles_azi = -camera_angles_azi
render_camera_angles_ele = camera_angles_ele
if projection_type == 'orthographic':
mv, proj = make_star_cameras_orthographic(render_camera_angles_azi, render_camera_angles_ele)
else:
mv, proj = make_star_cameras_perspective(render_camera_angles_azi, render_camera_angles_ele, distance=radius, r=radius, fov=fovy, device='cuda')
# stage 1
if train_stage1:
vertices, faces = reconstruct_stage1(normal_stg1, mv=mv, proj=proj, steps=stage1_steps, vertices=vertices, faces=faces, start_edge_len=start_edge_len_stage1, end_edge_len=end_edge_len_stage1, gain=0.05, return_mesh=False, loss_expansion_weight=expansion_weight, use_remesh=use_remesh_stage1)
# stage 2
if train_stage2:
vertices, faces = run_mesh_refine(vertices, faces, normal_pils, mv=mv, proj=proj, weights=weights, steps=stage2_steps, start_edge_len=start_edge_len_stage2, end_edge_len=end_edge_len_stage2, decay=0.99, update_normal_interval=20, update_warmup=5, return_mesh=False, process_inputs=False, process_outputs=False, cameras=cameras, use_remesh=use_remesh_stage2, loss_expansion_weight=expansion_weight_stage2)
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=1, apply_sub_divide=True, sub_divide_threshold=0.25).to("cuda")
return meshes
|