File size: 94,822 Bytes
df4a4de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import deprecate
from .activations import FP32SiLU, get_activation
from .attention_processor import Attention
def get_timestep_embedding(
timesteps: torch.Tensor,
embedding_dim: int,
flip_sin_to_cos: bool = False,
downscale_freq_shift: float = 1,
scale: float = 1,
max_period: int = 10000,
):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
Args
timesteps (torch.Tensor):
a 1-D Tensor of N indices, one per batch element. These may be fractional.
embedding_dim (int):
the dimension of the output.
flip_sin_to_cos (bool):
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
downscale_freq_shift (float):
Controls the delta between frequencies between dimensions
scale (float):
Scaling factor applied to the embeddings.
max_period (int):
Controls the maximum frequency of the embeddings
Returns
torch.Tensor: an [N x dim] Tensor of positional embeddings.
"""
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
# scale embeddings
emb = scale * emb
# concat sine and cosine embeddings
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
# flip sine and cosine embeddings
if flip_sin_to_cos:
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
# zero pad
if embedding_dim % 2 == 1:
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
return emb
def get_3d_sincos_pos_embed(
embed_dim: int,
spatial_size: Union[int, Tuple[int, int]],
temporal_size: int,
spatial_interpolation_scale: float = 1.0,
temporal_interpolation_scale: float = 1.0,
device: Optional[torch.device] = None,
output_type: str = "np",
) -> torch.Tensor:
r"""
Creates 3D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension of inputs. It must be divisible by 16.
spatial_size (`int` or `Tuple[int, int]`):
The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
spatial dimensions (height and width).
temporal_size (`int`):
The temporal dimension of postional embeddings (number of frames).
spatial_interpolation_scale (`float`, defaults to 1.0):
Scale factor for spatial grid interpolation.
temporal_interpolation_scale (`float`, defaults to 1.0):
Scale factor for temporal grid interpolation.
Returns:
`torch.Tensor`:
The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
embed_dim]`.
"""
if output_type == "np":
return _get_3d_sincos_pos_embed_np(
embed_dim=embed_dim,
spatial_size=spatial_size,
temporal_size=temporal_size,
spatial_interpolation_scale=spatial_interpolation_scale,
temporal_interpolation_scale=temporal_interpolation_scale,
)
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
if isinstance(spatial_size, int):
spatial_size = (spatial_size, spatial_size)
embed_dim_spatial = 3 * embed_dim // 4
embed_dim_temporal = embed_dim // 4
# 1. Spatial
grid_h = torch.arange(spatial_size[1], device=device, dtype=torch.float32) / spatial_interpolation_scale
grid_w = torch.arange(spatial_size[0], device=device, dtype=torch.float32) / spatial_interpolation_scale
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
grid = torch.stack(grid, dim=0)
grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid, output_type="pt")
# 2. Temporal
grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t, output_type="pt")
# 3. Concat
pos_embed_spatial = pos_embed_spatial[None, :, :]
pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0) # [T, H*W, D // 4 * 3]
pos_embed_temporal = pos_embed_temporal[:, None, :]
pos_embed_temporal = pos_embed_temporal.repeat_interleave(
spatial_size[0] * spatial_size[1], dim=1
) # [T, H*W, D // 4]
pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1) # [T, H*W, D]
return pos_embed
def _get_3d_sincos_pos_embed_np(
embed_dim: int,
spatial_size: Union[int, Tuple[int, int]],
temporal_size: int,
spatial_interpolation_scale: float = 1.0,
temporal_interpolation_scale: float = 1.0,
) -> np.ndarray:
r"""
Creates 3D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension of inputs. It must be divisible by 16.
spatial_size (`int` or `Tuple[int, int]`):
The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both
spatial dimensions (height and width).
temporal_size (`int`):
The temporal dimension of postional embeddings (number of frames).
spatial_interpolation_scale (`float`, defaults to 1.0):
Scale factor for spatial grid interpolation.
temporal_interpolation_scale (`float`, defaults to 1.0):
Scale factor for temporal grid interpolation.
Returns:
`np.ndarray`:
The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1],
embed_dim]`.
"""
deprecation_message = (
"`get_3d_sincos_pos_embed` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
if embed_dim % 4 != 0:
raise ValueError("`embed_dim` must be divisible by 4")
if isinstance(spatial_size, int):
spatial_size = (spatial_size, spatial_size)
embed_dim_spatial = 3 * embed_dim // 4
embed_dim_temporal = embed_dim // 4
# 1. Spatial
grid_h = np.arange(spatial_size[1], dtype=np.float32) / spatial_interpolation_scale
grid_w = np.arange(spatial_size[0], dtype=np.float32) / spatial_interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, spatial_size[1], spatial_size[0]])
pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(embed_dim_spatial, grid)
# 2. Temporal
grid_t = np.arange(temporal_size, dtype=np.float32) / temporal_interpolation_scale
pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t)
# 3. Concat
pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
pos_embed_spatial = np.repeat(pos_embed_spatial, temporal_size, axis=0) # [T, H*W, D // 4 * 3]
pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
pos_embed_temporal = np.repeat(pos_embed_temporal, spatial_size[0] * spatial_size[1], axis=1) # [T, H*W, D // 4]
pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1) # [T, H*W, D]
return pos_embed
def get_2d_sincos_pos_embed(
embed_dim,
grid_size,
cls_token=False,
extra_tokens=0,
interpolation_scale=1.0,
base_size=16,
device: Optional[torch.device] = None,
output_type: str = "np",
):
"""
Creates 2D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension.
grid_size (`int`):
The size of the grid height and width.
cls_token (`bool`, defaults to `False`):
Whether or not to add a classification token.
extra_tokens (`int`, defaults to `0`):
The number of extra tokens to add.
interpolation_scale (`float`, defaults to `1.0`):
The scale of the interpolation.
Returns:
pos_embed (`torch.Tensor`):
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
embed_dim]` if using cls_token
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_2d_sincos_pos_embed_np(
embed_dim=embed_dim,
grid_size=grid_size,
cls_token=cls_token,
extra_tokens=extra_tokens,
interpolation_scale=interpolation_scale,
base_size=base_size,
)
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = (
torch.arange(grid_size[0], device=device, dtype=torch.float32)
/ (grid_size[0] / base_size)
/ interpolation_scale
)
grid_w = (
torch.arange(grid_size[1], device=device, dtype=torch.float32)
/ (grid_size[1] / base_size)
/ interpolation_scale
)
grid = torch.meshgrid(grid_w, grid_h, indexing="xy") # here w goes first
grid = torch.stack(grid, dim=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type=output_type)
if cls_token and extra_tokens > 0:
pos_embed = torch.concat([torch.zeros([extra_tokens, embed_dim]), pos_embed], dim=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid, output_type="np"):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension.
grid (`torch.Tensor`): Grid of positions with shape `(H * W,)`.
Returns:
`torch.Tensor`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
"""
if output_type == "np":
deprecation_message = (
"`get_2d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_2d_sincos_pos_embed_from_grid_np(
embed_dim=embed_dim,
grid=grid,
)
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0], output_type=output_type) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1], output_type=output_type) # (H*W, D/2)
emb = torch.concat([emb_h, emb_w], dim=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos, output_type="np"):
"""
This function generates 1D positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension `D`
pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)`
Returns:
`torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`.
"""
if output_type == "np":
deprecation_message = (
"`get_1d_sincos_pos_embed_from_grid` uses `torch` and supports `device`."
" `from_numpy` is no longer required."
" Pass `output_type='pt' to use the new version now."
)
deprecate("output_type=='np'", "0.33.0", deprecation_message, standard_warn=False)
return get_1d_sincos_pos_embed_from_grid_np(embed_dim=embed_dim, pos=pos)
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = torch.outer(pos, omega) # (M, D/2), outer product
emb_sin = torch.sin(out) # (M, D/2)
emb_cos = torch.cos(out) # (M, D/2)
emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D)
return emb
def get_2d_sincos_pos_embed_np(
embed_dim, grid_size, cls_token=False, extra_tokens=0, interpolation_scale=1.0, base_size=16
):
"""
Creates 2D sinusoidal positional embeddings.
Args:
embed_dim (`int`):
The embedding dimension.
grid_size (`int`):
The size of the grid height and width.
cls_token (`bool`, defaults to `False`):
Whether or not to add a classification token.
extra_tokens (`int`, defaults to `0`):
The number of extra tokens to add.
interpolation_scale (`float`, defaults to `1.0`):
The scale of the interpolation.
Returns:
pos_embed (`np.ndarray`):
Shape is either `[grid_size * grid_size, embed_dim]` if not using cls_token, or `[1 + grid_size*grid_size,
embed_dim]` if using cls_token
"""
if isinstance(grid_size, int):
grid_size = (grid_size, grid_size)
grid_h = np.arange(grid_size[0], dtype=np.float32) / (grid_size[0] / base_size) / interpolation_scale
grid_w = np.arange(grid_size[1], dtype=np.float32) / (grid_size[1] / base_size) / interpolation_scale
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0)
grid = grid.reshape([2, 1, grid_size[1], grid_size[0]])
pos_embed = get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid)
if cls_token and extra_tokens > 0:
pos_embed = np.concatenate([np.zeros([extra_tokens, embed_dim]), pos_embed], axis=0)
return pos_embed
def get_2d_sincos_pos_embed_from_grid_np(embed_dim, grid):
r"""
This function generates 2D sinusoidal positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension.
grid (`np.ndarray`): Grid of positions with shape `(H * W,)`.
Returns:
`np.ndarray`: The 2D sinusoidal positional embeddings with shape `(H * W, embed_dim)`
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
# use half of dimensions to encode grid_h
emb_h = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[0]) # (H*W, D/2)
emb_w = get_1d_sincos_pos_embed_from_grid_np(embed_dim // 2, grid[1]) # (H*W, D/2)
emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
return emb
def get_1d_sincos_pos_embed_from_grid_np(embed_dim, pos):
"""
This function generates 1D positional embeddings from a grid.
Args:
embed_dim (`int`): The embedding dimension `D`
pos (`numpy.ndarray`): 1D tensor of positions with shape `(M,)`
Returns:
`numpy.ndarray`: Sinusoidal positional embeddings of shape `(M, D)`.
"""
if embed_dim % 2 != 0:
raise ValueError("embed_dim must be divisible by 2")
omega = np.arange(embed_dim // 2, dtype=np.float64)
omega /= embed_dim / 2.0
omega = 1.0 / 10000**omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out) # (M, D/2)
emb_cos = np.cos(out) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
class PatchEmbed(nn.Module):
"""
2D Image to Patch Embedding with support for SD3 cropping.
Args:
height (`int`, defaults to `224`): The height of the image.
width (`int`, defaults to `224`): The width of the image.
patch_size (`int`, defaults to `16`): The size of the patches.
in_channels (`int`, defaults to `3`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
layer_norm (`bool`, defaults to `False`): Whether or not to use layer normalization.
flatten (`bool`, defaults to `True`): Whether or not to flatten the output.
bias (`bool`, defaults to `True`): Whether or not to use bias.
interpolation_scale (`float`, defaults to `1`): The scale of the interpolation.
pos_embed_type (`str`, defaults to `"sincos"`): The type of positional embedding.
pos_embed_max_size (`int`, defaults to `None`): The maximum size of the positional embedding.
"""
def __init__(
self,
height=224,
width=224,
patch_size=16,
in_channels=3,
embed_dim=768,
layer_norm=False,
flatten=True,
bias=True,
interpolation_scale=1,
pos_embed_type="sincos",
pos_embed_max_size=None, # For SD3 cropping
):
super().__init__()
num_patches = (height // patch_size) * (width // patch_size)
self.flatten = flatten
self.layer_norm = layer_norm
self.pos_embed_max_size = pos_embed_max_size
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
if layer_norm:
self.norm = nn.LayerNorm(embed_dim, elementwise_affine=False, eps=1e-6)
else:
self.norm = None
self.patch_size = patch_size
self.height, self.width = height // patch_size, width // patch_size
self.base_size = height // patch_size
self.interpolation_scale = interpolation_scale
# Calculate positional embeddings based on max size or default
if pos_embed_max_size:
grid_size = pos_embed_max_size
else:
grid_size = int(num_patches**0.5)
if pos_embed_type is None:
self.pos_embed = None
elif pos_embed_type == "sincos":
pos_embed = get_2d_sincos_pos_embed(
embed_dim,
grid_size,
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
output_type="pt",
)
persistent = True if pos_embed_max_size else False
self.register_buffer("pos_embed", pos_embed.float().unsqueeze(0), persistent=persistent)
else:
raise ValueError(f"Unsupported pos_embed_type: {pos_embed_type}")
def cropped_pos_embed(self, height, width):
"""Crops positional embeddings for SD3 compatibility."""
if self.pos_embed_max_size is None:
raise ValueError("`pos_embed_max_size` must be set for cropping.")
height = height // self.patch_size
width = width // self.patch_size
if height > self.pos_embed_max_size:
raise ValueError(
f"Height ({height}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
if width > self.pos_embed_max_size:
raise ValueError(
f"Width ({width}) cannot be greater than `pos_embed_max_size`: {self.pos_embed_max_size}."
)
top = (self.pos_embed_max_size - height) // 2
left = (self.pos_embed_max_size - width) // 2
spatial_pos_embed = self.pos_embed.reshape(1, self.pos_embed_max_size, self.pos_embed_max_size, -1)
spatial_pos_embed = spatial_pos_embed[:, top : top + height, left : left + width, :]
spatial_pos_embed = spatial_pos_embed.reshape(1, -1, spatial_pos_embed.shape[-1])
return spatial_pos_embed
def forward(self, latent):
if self.pos_embed_max_size is not None:
height, width = latent.shape[-2:]
else:
height, width = latent.shape[-2] // self.patch_size, latent.shape[-1] // self.patch_size
latent = self.proj(latent)
if self.flatten:
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
if self.layer_norm:
latent = self.norm(latent)
if self.pos_embed is None:
return latent.to(latent.dtype)
# Interpolate or crop positional embeddings as needed
if self.pos_embed_max_size:
pos_embed = self.cropped_pos_embed(height, width)
else:
if self.height != height or self.width != width:
pos_embed = get_2d_sincos_pos_embed(
embed_dim=self.pos_embed.shape[-1],
grid_size=(height, width),
base_size=self.base_size,
interpolation_scale=self.interpolation_scale,
device=latent.device,
output_type="pt",
)
pos_embed = pos_embed.float().unsqueeze(0)
else:
pos_embed = self.pos_embed
return (latent + pos_embed).to(latent.dtype)
class LuminaPatchEmbed(nn.Module):
"""
2D Image to Patch Embedding with support for Lumina-T2X
Args:
patch_size (`int`, defaults to `2`): The size of the patches.
in_channels (`int`, defaults to `4`): The number of input channels.
embed_dim (`int`, defaults to `768`): The output dimension of the embedding.
bias (`bool`, defaults to `True`): Whether or not to use bias.
"""
def __init__(self, patch_size=2, in_channels=4, embed_dim=768, bias=True):
super().__init__()
self.patch_size = patch_size
self.proj = nn.Linear(
in_features=patch_size * patch_size * in_channels,
out_features=embed_dim,
bias=bias,
)
def forward(self, x, freqs_cis):
"""
Patchifies and embeds the input tensor(s).
Args:
x (List[torch.Tensor] | torch.Tensor): The input tensor(s) to be patchified and embedded.
Returns:
Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], torch.Tensor]: A tuple containing the patchified
and embedded tensor(s), the mask indicating the valid patches, the original image size(s), and the
frequency tensor(s).
"""
freqs_cis = freqs_cis.to(x[0].device)
patch_height = patch_width = self.patch_size
batch_size, channel, height, width = x.size()
height_tokens, width_tokens = height // patch_height, width // patch_width
x = x.view(batch_size, channel, height_tokens, patch_height, width_tokens, patch_width).permute(
0, 2, 4, 1, 3, 5
)
x = x.flatten(3)
x = self.proj(x)
x = x.flatten(1, 2)
mask = torch.ones(x.shape[0], x.shape[1], dtype=torch.int32, device=x.device)
return (
x,
mask,
[(height, width)] * batch_size,
freqs_cis[:height_tokens, :width_tokens].flatten(0, 1).unsqueeze(0),
)
class CogVideoXPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 2,
patch_size_t: Optional[int] = None,
in_channels: int = 16,
embed_dim: int = 1920,
text_embed_dim: int = 4096,
bias: bool = True,
sample_width: int = 90,
sample_height: int = 60,
sample_frames: int = 49,
temporal_compression_ratio: int = 4,
max_text_seq_length: int = 226,
spatial_interpolation_scale: float = 1.875,
temporal_interpolation_scale: float = 1.0,
use_positional_embeddings: bool = True,
use_learned_positional_embeddings: bool = True,
) -> None:
super().__init__()
self.patch_size = patch_size
self.patch_size_t = patch_size_t
self.embed_dim = embed_dim
self.sample_height = sample_height
self.sample_width = sample_width
self.sample_frames = sample_frames
self.temporal_compression_ratio = temporal_compression_ratio
self.max_text_seq_length = max_text_seq_length
self.spatial_interpolation_scale = spatial_interpolation_scale
self.temporal_interpolation_scale = temporal_interpolation_scale
self.use_positional_embeddings = use_positional_embeddings
self.use_learned_positional_embeddings = use_learned_positional_embeddings
if patch_size_t is None:
# CogVideoX 1.0 checkpoints
self.proj = nn.Conv2d(
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias
)
else:
# CogVideoX 1.5 checkpoints
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim)
self.text_proj = nn.Linear(text_embed_dim, embed_dim)
if use_positional_embeddings or use_learned_positional_embeddings:
persistent = use_learned_positional_embeddings
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames)
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent)
def _get_positional_embeddings(
self, sample_height: int, sample_width: int, sample_frames: int, device: Optional[torch.device] = None
) -> torch.Tensor:
post_patch_height = sample_height // self.patch_size
post_patch_width = sample_width // self.patch_size
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1
num_patches = post_patch_height * post_patch_width * post_time_compression_frames
pos_embedding = get_3d_sincos_pos_embed(
self.embed_dim,
(post_patch_width, post_patch_height),
post_time_compression_frames,
self.spatial_interpolation_scale,
self.temporal_interpolation_scale,
device=device,
output_type="pt",
)
pos_embedding = pos_embedding.flatten(0, 1)
joint_pos_embedding = torch.zeros(
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False
)
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding)
return joint_pos_embedding
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
r"""
Args:
text_embeds (`torch.Tensor`):
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim).
image_embeds (`torch.Tensor`):
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width).
"""
text_embeds = self.text_proj(text_embeds)
batch_size, num_frames, channels, height, width = image_embeds.shape
if self.patch_size_t is None:
image_embeds = image_embeds.reshape(-1, channels, height, width)
image_embeds = self.proj(image_embeds)
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:])
image_embeds = image_embeds.flatten(3).transpose(2, 3) # [batch, num_frames, height x width, channels]
image_embeds = image_embeds.flatten(1, 2) # [batch, num_frames x height x width, channels]
else:
p = self.patch_size
p_t = self.patch_size_t
image_embeds = image_embeds.permute(0, 1, 3, 4, 2)
image_embeds = image_embeds.reshape(
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels
)
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3)
image_embeds = self.proj(image_embeds)
embeds = torch.cat(
[text_embeds, image_embeds], dim=1
).contiguous() # [batch, seq_length + num_frames x height x width, channels]
if self.use_positional_embeddings or self.use_learned_positional_embeddings:
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height):
raise ValueError(
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'."
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues."
)
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
if (
self.sample_height != height
or self.sample_width != width
or self.sample_frames != pre_time_compression_frames
):
pos_embedding = self._get_positional_embeddings(
height, width, pre_time_compression_frames, device=embeds.device
)
pos_embedding = pos_embedding.to(dtype=embeds.dtype)
else:
pos_embedding = self.pos_embedding
embeds = embeds + pos_embedding
return embeds
class CogView3PlusPatchEmbed(nn.Module):
def __init__(
self,
in_channels: int = 16,
hidden_size: int = 2560,
patch_size: int = 2,
text_hidden_size: int = 4096,
pos_embed_max_size: int = 128,
):
super().__init__()
self.in_channels = in_channels
self.hidden_size = hidden_size
self.patch_size = patch_size
self.text_hidden_size = text_hidden_size
self.pos_embed_max_size = pos_embed_max_size
# Linear projection for image patches
self.proj = nn.Linear(in_channels * patch_size**2, hidden_size)
# Linear projection for text embeddings
self.text_proj = nn.Linear(text_hidden_size, hidden_size)
pos_embed = get_2d_sincos_pos_embed(
hidden_size, pos_embed_max_size, base_size=pos_embed_max_size, output_type="pt"
)
pos_embed = pos_embed.reshape(pos_embed_max_size, pos_embed_max_size, hidden_size)
self.register_buffer("pos_embed", pos_embed.float(), persistent=False)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, channel, height, width = hidden_states.shape
if height % self.patch_size != 0 or width % self.patch_size != 0:
raise ValueError("Height and width must be divisible by patch size")
height = height // self.patch_size
width = width // self.patch_size
hidden_states = hidden_states.view(batch_size, channel, height, self.patch_size, width, self.patch_size)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5).contiguous()
hidden_states = hidden_states.view(batch_size, height * width, channel * self.patch_size * self.patch_size)
# Project the patches
hidden_states = self.proj(hidden_states)
encoder_hidden_states = self.text_proj(encoder_hidden_states)
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
# Calculate text_length
text_length = encoder_hidden_states.shape[1]
image_pos_embed = self.pos_embed[:height, :width].reshape(height * width, -1)
text_pos_embed = torch.zeros(
(text_length, self.hidden_size), dtype=image_pos_embed.dtype, device=image_pos_embed.device
)
pos_embed = torch.cat([text_pos_embed, image_pos_embed], dim=0)[None, ...]
return (hidden_states + pos_embed).to(hidden_states.dtype)
def get_3d_rotary_pos_embed(
embed_dim,
crops_coords,
grid_size,
temporal_size,
theta: int = 10000,
use_real: bool = True,
grid_type: str = "linspace",
max_size: Optional[Tuple[int, int]] = None,
device: Optional[torch.device] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
"""
RoPE for video tokens with 3D structure.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
crops_coords (`Tuple[int]`):
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the spatial positional embedding (height, width).
temporal_size (`int`):
The size of the temporal dimension.
theta (`float`):
Scaling factor for frequency computation.
grid_type (`str`):
Whether to use "linspace" or "slice" to compute grids.
Returns:
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
"""
if use_real is not True:
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed")
if grid_type == "linspace":
start, stop = crops_coords
grid_size_h, grid_size_w = grid_size
grid_h = torch.linspace(
start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
)
grid_w = torch.linspace(
start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
)
grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
grid_t = torch.linspace(
0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
)
elif grid_type == "slice":
max_h, max_w = max_size
grid_size_h, grid_size_w = grid_size
grid_h = torch.arange(max_h, device=device, dtype=torch.float32)
grid_w = torch.arange(max_w, device=device, dtype=torch.float32)
grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32)
else:
raise ValueError("Invalid value passed for `grid_type`.")
# Compute dimensions for each axis
dim_t = embed_dim // 4
dim_h = embed_dim // 8 * 3
dim_w = embed_dim // 8 * 3
# Temporal frequencies
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, theta=theta, use_real=True)
# Spatial frequencies for height and width
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, theta=theta, use_real=True)
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, theta=theta, use_real=True)
# BroadCast and concatenate temporal and spaial frequencie (height and width) into a 3d tensor
def combine_time_height_width(freqs_t, freqs_h, freqs_w):
freqs_t = freqs_t[:, None, None, :].expand(
-1, grid_size_h, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_w, dim_t
freqs_h = freqs_h[None, :, None, :].expand(
temporal_size, -1, grid_size_w, -1
) # temporal_size, grid_size_h, grid_size_2, dim_h
freqs_w = freqs_w[None, None, :, :].expand(
temporal_size, grid_size_h, -1, -1
) # temporal_size, grid_size_h, grid_size_2, dim_w
freqs = torch.cat(
[freqs_t, freqs_h, freqs_w], dim=-1
) # temporal_size, grid_size_h, grid_size_w, (dim_t + dim_h + dim_w)
freqs = freqs.view(
temporal_size * grid_size_h * grid_size_w, -1
) # (temporal_size * grid_size_h * grid_size_w), (dim_t + dim_h + dim_w)
return freqs
t_cos, t_sin = freqs_t # both t_cos and t_sin has shape: temporal_size, dim_t
h_cos, h_sin = freqs_h # both h_cos and h_sin has shape: grid_size_h, dim_h
w_cos, w_sin = freqs_w # both w_cos and w_sin has shape: grid_size_w, dim_w
if grid_type == "slice":
t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size]
h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h]
w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w]
cos = combine_time_height_width(t_cos, h_cos, w_cos)
sin = combine_time_height_width(t_sin, h_sin, w_sin)
return cos, sin
def get_3d_rotary_pos_embed_allegro(
embed_dim,
crops_coords,
grid_size,
temporal_size,
interpolation_scale: Tuple[float, float, float] = (1.0, 1.0, 1.0),
theta: int = 10000,
device: Optional[torch.device] = None,
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
# TODO(aryan): docs
start, stop = crops_coords
grid_size_h, grid_size_w = grid_size
interpolation_scale_t, interpolation_scale_h, interpolation_scale_w = interpolation_scale
grid_t = torch.linspace(
0, temporal_size * (temporal_size - 1) / temporal_size, temporal_size, device=device, dtype=torch.float32
)
grid_h = torch.linspace(
start[0], stop[0] * (grid_size_h - 1) / grid_size_h, grid_size_h, device=device, dtype=torch.float32
)
grid_w = torch.linspace(
start[1], stop[1] * (grid_size_w - 1) / grid_size_w, grid_size_w, device=device, dtype=torch.float32
)
# Compute dimensions for each axis
dim_t = embed_dim // 3
dim_h = embed_dim // 3
dim_w = embed_dim // 3
# Temporal frequencies
freqs_t = get_1d_rotary_pos_embed(
dim_t, grid_t / interpolation_scale_t, theta=theta, use_real=True, repeat_interleave_real=False
)
# Spatial frequencies for height and width
freqs_h = get_1d_rotary_pos_embed(
dim_h, grid_h / interpolation_scale_h, theta=theta, use_real=True, repeat_interleave_real=False
)
freqs_w = get_1d_rotary_pos_embed(
dim_w, grid_w / interpolation_scale_w, theta=theta, use_real=True, repeat_interleave_real=False
)
return freqs_t, freqs_h, freqs_w, grid_t, grid_h, grid_w
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
"""
RoPE for image tokens with 2d structure.
Args:
embed_dim: (`int`):
The embedding dimension size
crops_coords (`Tuple[int]`)
The top-left and bottom-right coordinates of the crop.
grid_size (`Tuple[int]`):
The grid size of the positional embedding.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
start, stop = crops_coords
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
grid = np.meshgrid(grid_w, grid_h) # here w goes first
grid = np.stack(grid, axis=0) # [2, W, H]
grid = grid.reshape([2, 1, *grid.shape[1:]])
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
return pos_embed
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
"""
Get 2D RoPE from grid.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
grid (`np.ndarray`):
The grid of the positional embedding.
use_real (`bool`):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
Returns:
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
assert embed_dim % 4 == 0
# use half of dimensions to encode grid_h
emb_h = get_1d_rotary_pos_embed(
embed_dim // 2, grid[0].reshape(-1), use_real=use_real
) # (H*W, D/2) if use_real else (H*W, D/4)
emb_w = get_1d_rotary_pos_embed(
embed_dim // 2, grid[1].reshape(-1), use_real=use_real
) # (H*W, D/2) if use_real else (H*W, D/4)
if use_real:
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D)
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D)
return cos, sin
else:
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
return emb
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
"""
Get 2D RoPE from grid.
Args:
embed_dim: (`int`):
The embedding dimension size, corresponding to hidden_size_head.
grid (`np.ndarray`):
The grid of the positional embedding.
linear_factor (`float`):
The linear factor of the positional embedding, which is used to scale the positional embedding in the linear
layer.
ntk_factor (`float`):
The ntk factor of the positional embedding, which is used to scale the positional embedding in the ntk layer.
Returns:
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
"""
assert embed_dim % 4 == 0
emb_h = get_1d_rotary_pos_embed(
embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
) # (H, D/4)
emb_w = get_1d_rotary_pos_embed(
embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
) # (W, D/4)
emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1)
emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1)
emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2)
return emb
def get_1d_rotary_pos_embed(
dim: int,
pos: Union[np.ndarray, int],
theta: float = 10000.0,
use_real=False,
linear_factor=1.0,
ntk_factor=1.0,
repeat_interleave_real=True,
freqs_dtype=torch.float32, # torch.float32, torch.float64 (flux)
):
"""
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
data type.
Args:
dim (`int`): Dimension of the frequency tensor.
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
theta (`float`, *optional*, defaults to 10000.0):
Scaling factor for frequency computation. Defaults to 10000.0.
use_real (`bool`, *optional*):
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
linear_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the context extrapolation. Defaults to 1.0.
ntk_factor (`float`, *optional*, defaults to 1.0):
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
Otherwise, they are concateanted with themselves.
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
the dtype of the frequency tensor.
Returns:
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
"""
assert dim % 2 == 0
if isinstance(pos, int):
pos = torch.arange(pos)
if isinstance(pos, np.ndarray):
pos = torch.from_numpy(pos) # type: ignore # [S]
theta = theta * ntk_factor
freqs = (
1.0
/ (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype, device=pos.device)[: (dim // 2)] / dim))
/ linear_factor
) # [D/2]
freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2]
if use_real and repeat_interleave_real:
# flux, hunyuan-dit, cogvideox
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
return freqs_cos, freqs_sin
elif use_real:
# stable audio, allegro
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
return freqs_cos, freqs_sin
else:
# lumina
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 # [S, D/2]
return freqs_cis
def apply_rotary_emb(
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
use_real: bool = True,
use_real_unbind_dim: int = -1,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
if use_real:
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
if use_real_unbind_dim == -1:
# Used for flux, cogvideox, hunyuan-dit
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
elif use_real_unbind_dim == -2:
# Used for Stable Audio
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
else:
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
else:
# used for lumina
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
freqs_cis = freqs_cis.unsqueeze(2)
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
return x_out.type_as(x)
def apply_rotary_emb_allegro(x: torch.Tensor, freqs_cis, positions):
# TODO(aryan): rewrite
def apply_1d_rope(tokens, pos, cos, sin):
cos = F.embedding(pos, cos)[:, None, :, :]
sin = F.embedding(pos, sin)[:, None, :, :]
x1, x2 = tokens[..., : tokens.shape[-1] // 2], tokens[..., tokens.shape[-1] // 2 :]
tokens_rotated = torch.cat((-x2, x1), dim=-1)
return (tokens.float() * cos + tokens_rotated.float() * sin).to(tokens.dtype)
(t_cos, t_sin), (h_cos, h_sin), (w_cos, w_sin) = freqs_cis
t, h, w = x.chunk(3, dim=-1)
t = apply_1d_rope(t, positions[0], t_cos, t_sin)
h = apply_1d_rope(h, positions[1], h_cos, h_sin)
w = apply_1d_rope(w, positions[2], w_cos, w_sin)
x = torch.cat([t, h, w], dim=-1)
return x
class FluxPosEmbed(nn.Module):
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
cos_out = []
sin_out = []
pos = ids.float()
is_mps = ids.device.type == "mps"
freqs_dtype = torch.float32 if is_mps else torch.float64
for i in range(n_axes):
cos, sin = get_1d_rotary_pos_embed(
self.axes_dim[i],
pos[:, i],
theta=self.theta,
repeat_interleave_real=True,
use_real=True,
freqs_dtype=freqs_dtype,
)
cos_out.append(cos)
sin_out.append(sin)
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
return freqs_cos, freqs_sin
class TimestepEmbedding(nn.Module):
def __init__(
self,
in_channels: int,
time_embed_dim: int,
act_fn: str = "silu",
out_dim: int = None,
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
):
super().__init__()
self.linear_1 = nn.Linear(in_channels, time_embed_dim, sample_proj_bias)
if cond_proj_dim is not None:
self.cond_proj = nn.Linear(cond_proj_dim, in_channels, bias=False)
else:
self.cond_proj = None
self.act = get_activation(act_fn)
if out_dim is not None:
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias)
if post_act_fn is None:
self.post_act = None
else:
self.post_act = get_activation(post_act_fn)
def forward(self, sample, condition=None):
if condition is not None:
sample = sample + self.cond_proj(condition)
sample = self.linear_1(sample)
if self.act is not None:
sample = self.act(sample)
sample = self.linear_2(sample)
if self.post_act is not None:
sample = self.post_act(sample)
return sample
class Timesteps(nn.Module):
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float, scale: int = 1):
super().__init__()
self.num_channels = num_channels
self.flip_sin_to_cos = flip_sin_to_cos
self.downscale_freq_shift = downscale_freq_shift
self.scale = scale
def forward(self, timesteps):
t_emb = get_timestep_embedding(
timesteps,
self.num_channels,
flip_sin_to_cos=self.flip_sin_to_cos,
downscale_freq_shift=self.downscale_freq_shift,
scale=self.scale,
)
return t_emb
class GaussianFourierProjection(nn.Module):
"""Gaussian Fourier embeddings for noise levels."""
def __init__(
self, embedding_size: int = 256, scale: float = 1.0, set_W_to_weight=True, log=True, flip_sin_to_cos=False
):
super().__init__()
self.weight = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.log = log
self.flip_sin_to_cos = flip_sin_to_cos
if set_W_to_weight:
# to delete later
del self.weight
self.W = nn.Parameter(torch.randn(embedding_size) * scale, requires_grad=False)
self.weight = self.W
del self.W
def forward(self, x):
if self.log:
x = torch.log(x)
x_proj = x[:, None] * self.weight[None, :] * 2 * np.pi
if self.flip_sin_to_cos:
out = torch.cat([torch.cos(x_proj), torch.sin(x_proj)], dim=-1)
else:
out = torch.cat([torch.sin(x_proj), torch.cos(x_proj)], dim=-1)
return out
class SinusoidalPositionalEmbedding(nn.Module):
"""Apply positional information to a sequence of embeddings.
Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to
them
Args:
embed_dim: (int): Dimension of the positional embedding.
max_seq_length: Maximum sequence length to apply positional embeddings
"""
def __init__(self, embed_dim: int, max_seq_length: int = 32):
super().__init__()
position = torch.arange(max_seq_length).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim))
pe = torch.zeros(1, max_seq_length, embed_dim)
pe[0, :, 0::2] = torch.sin(position * div_term)
pe[0, :, 1::2] = torch.cos(position * div_term)
self.register_buffer("pe", pe)
def forward(self, x):
_, seq_length, _ = x.shape
x = x + self.pe[:, :seq_length]
return x
class ImagePositionalEmbeddings(nn.Module):
"""
Converts latent image classes into vector embeddings. Sums the vector embeddings with positional embeddings for the
height and width of the latent space.
For more details, see figure 10 of the dall-e paper: https://arxiv.org/abs/2102.12092
For VQ-diffusion:
Output vector embeddings are used as input for the transformer.
Note that the vector embeddings for the transformer are different than the vector embeddings from the VQVAE.
Args:
num_embed (`int`):
Number of embeddings for the latent pixels embeddings.
height (`int`):
Height of the latent image i.e. the number of height embeddings.
width (`int`):
Width of the latent image i.e. the number of width embeddings.
embed_dim (`int`):
Dimension of the produced vector embeddings. Used for the latent pixel, height, and width embeddings.
"""
def __init__(
self,
num_embed: int,
height: int,
width: int,
embed_dim: int,
):
super().__init__()
self.height = height
self.width = width
self.num_embed = num_embed
self.embed_dim = embed_dim
self.emb = nn.Embedding(self.num_embed, embed_dim)
self.height_emb = nn.Embedding(self.height, embed_dim)
self.width_emb = nn.Embedding(self.width, embed_dim)
def forward(self, index):
emb = self.emb(index)
height_emb = self.height_emb(torch.arange(self.height, device=index.device).view(1, self.height))
# 1 x H x D -> 1 x H x 1 x D
height_emb = height_emb.unsqueeze(2)
width_emb = self.width_emb(torch.arange(self.width, device=index.device).view(1, self.width))
# 1 x W x D -> 1 x 1 x W x D
width_emb = width_emb.unsqueeze(1)
pos_emb = height_emb + width_emb
# 1 x H x W x D -> 1 x L xD
pos_emb = pos_emb.view(1, self.height * self.width, -1)
emb = emb + pos_emb[:, : emb.shape[1], :]
return emb
class LabelEmbedding(nn.Module):
"""
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
Args:
num_classes (`int`): The number of classes.
hidden_size (`int`): The size of the vector embeddings.
dropout_prob (`float`): The probability of dropping a label.
"""
def __init__(self, num_classes, hidden_size, dropout_prob):
super().__init__()
use_cfg_embedding = dropout_prob > 0
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
self.num_classes = num_classes
self.dropout_prob = dropout_prob
def token_drop(self, labels, force_drop_ids=None):
"""
Drops labels to enable classifier-free guidance.
"""
if force_drop_ids is None:
drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
else:
drop_ids = torch.tensor(force_drop_ids == 1)
labels = torch.where(drop_ids, self.num_classes, labels)
return labels
def forward(self, labels: torch.LongTensor, force_drop_ids=None):
use_dropout = self.dropout_prob > 0
if (self.training and use_dropout) or (force_drop_ids is not None):
labels = self.token_drop(labels, force_drop_ids)
embeddings = self.embedding_table(labels)
return embeddings
class TextImageProjection(nn.Module):
def __init__(
self,
text_embed_dim: int = 1024,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 10,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.text_proj = nn.Linear(text_embed_dim, cross_attention_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
batch_size = text_embeds.shape[0]
# image
image_text_embeds = self.image_embeds(image_embeds)
image_text_embeds = image_text_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
# text
text_embeds = self.text_proj(text_embeds)
return torch.cat([image_text_embeds, text_embeds], dim=1)
class ImageProjection(nn.Module):
def __init__(
self,
image_embed_dim: int = 768,
cross_attention_dim: int = 768,
num_image_text_embeds: int = 32,
):
super().__init__()
self.num_image_text_embeds = num_image_text_embeds
self.image_embeds = nn.Linear(image_embed_dim, self.num_image_text_embeds * cross_attention_dim)
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
batch_size = image_embeds.shape[0]
# image
image_embeds = self.image_embeds(image_embeds)
image_embeds = image_embeds.reshape(batch_size, self.num_image_text_embeds, -1)
image_embeds = self.norm(image_embeds)
return image_embeds
class IPAdapterFullImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024):
super().__init__()
from .attention import FeedForward
self.ff = FeedForward(image_embed_dim, cross_attention_dim, mult=1, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
return self.norm(self.ff(image_embeds))
class IPAdapterFaceIDImageProjection(nn.Module):
def __init__(self, image_embed_dim=1024, cross_attention_dim=1024, mult=1, num_tokens=1):
super().__init__()
from .attention import FeedForward
self.num_tokens = num_tokens
self.cross_attention_dim = cross_attention_dim
self.ff = FeedForward(image_embed_dim, cross_attention_dim * num_tokens, mult=mult, activation_fn="gelu")
self.norm = nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds: torch.Tensor):
x = self.ff(image_embeds)
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
return self.norm(x)
class CombinedTimestepLabelEmbeddings(nn.Module):
def __init__(self, num_classes, embedding_dim, class_dropout_prob=0.1):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=1)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.class_embedder = LabelEmbedding(num_classes, embedding_dim, class_dropout_prob)
def forward(self, timestep, class_labels, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
class_labels = self.class_embedder(class_labels) # (N, D)
conditioning = timesteps_emb + class_labels # (N, D)
return conditioning
class CombinedTimestepTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
pooled_projections = self.text_embedder(pooled_projection)
conditioning = timesteps_emb + pooled_projections
return conditioning
class CombinedTimestepGuidanceTextProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(self, timestep, guidance, pooled_projection):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D)
guidance_proj = self.time_proj(guidance)
guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) # (N, D)
time_guidance_emb = timesteps_emb + guidance_emb
pooled_projections = self.text_embedder(pooled_projection)
conditioning = time_guidance_emb + pooled_projections
return conditioning
class CogView3CombinedTimestepSizeEmbeddings(nn.Module):
def __init__(self, embedding_dim: int, condition_dim: int, pooled_projection_dim: int, timesteps_dim: int = 256):
super().__init__()
self.time_proj = Timesteps(num_channels=timesteps_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.condition_proj = Timesteps(num_channels=condition_dim, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=timesteps_dim, time_embed_dim=embedding_dim)
self.condition_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu")
def forward(
self,
timestep: torch.Tensor,
original_size: torch.Tensor,
target_size: torch.Tensor,
crop_coords: torch.Tensor,
hidden_dtype: torch.dtype,
) -> torch.Tensor:
timesteps_proj = self.time_proj(timestep)
original_size_proj = self.condition_proj(original_size.flatten()).view(original_size.size(0), -1)
crop_coords_proj = self.condition_proj(crop_coords.flatten()).view(crop_coords.size(0), -1)
target_size_proj = self.condition_proj(target_size.flatten()).view(target_size.size(0), -1)
# (B, 3 * condition_dim)
condition_proj = torch.cat([original_size_proj, crop_coords_proj, target_size_proj], dim=1)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
condition_emb = self.condition_embedder(condition_proj.to(dtype=hidden_dtype)) # (B, embedding_dim)
conditioning = timesteps_emb + condition_emb
return conditioning
class HunyuanDiTAttentionPool(nn.Module):
# Copied from https://github.com/Tencent/HunyuanDiT/blob/cb709308d92e6c7e8d59d0dff41b74d35088db6a/hydit/modules/poolers.py#L6
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
super().__init__()
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim + 1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim)
self.q_proj = nn.Linear(embed_dim, embed_dim)
self.v_proj = nn.Linear(embed_dim, embed_dim)
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
self.num_heads = num_heads
def forward(self, x):
x = x.permute(1, 0, 2) # NLC -> LNC
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (L+1)NC
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (L+1)NC
x, _ = F.multi_head_attention_forward(
query=x[:1],
key=x,
value=x,
embed_dim_to_check=x.shape[-1],
num_heads=self.num_heads,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
in_proj_weight=None,
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
bias_k=None,
bias_v=None,
add_zero_attn=False,
dropout_p=0,
out_proj_weight=self.c_proj.weight,
out_proj_bias=self.c_proj.bias,
use_separate_proj_weight=True,
training=self.training,
need_weights=False,
)
return x.squeeze(0)
class HunyuanCombinedTimestepTextSizeStyleEmbedding(nn.Module):
def __init__(
self,
embedding_dim,
pooled_projection_dim=1024,
seq_len=256,
cross_attention_dim=2048,
use_style_cond_and_image_meta_size=True,
):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.size_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.pooler = HunyuanDiTAttentionPool(
seq_len, cross_attention_dim, num_heads=8, output_dim=pooled_projection_dim
)
# Here we use a default learned embedder layer for future extension.
self.use_style_cond_and_image_meta_size = use_style_cond_and_image_meta_size
if use_style_cond_and_image_meta_size:
self.style_embedder = nn.Embedding(1, embedding_dim)
extra_in_dim = 256 * 6 + embedding_dim + pooled_projection_dim
else:
extra_in_dim = pooled_projection_dim
self.extra_embedder = PixArtAlphaTextProjection(
in_features=extra_in_dim,
hidden_size=embedding_dim * 4,
out_features=embedding_dim,
act_fn="silu_fp32",
)
def forward(self, timestep, encoder_hidden_states, image_meta_size, style, hidden_dtype=None):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, 256)
# extra condition1: text
pooled_projections = self.pooler(encoder_hidden_states) # (N, 1024)
if self.use_style_cond_and_image_meta_size:
# extra condition2: image meta size embedding
image_meta_size = self.size_proj(image_meta_size.view(-1))
image_meta_size = image_meta_size.to(dtype=hidden_dtype)
image_meta_size = image_meta_size.view(-1, 6 * 256) # (N, 1536)
# extra condition3: style embedding
style_embedding = self.style_embedder(style) # (N, embedding_dim)
# Concatenate all extra vectors
extra_cond = torch.cat([pooled_projections, image_meta_size, style_embedding], dim=1)
else:
extra_cond = torch.cat([pooled_projections], dim=1)
conditioning = timesteps_emb + self.extra_embedder(extra_cond) # [B, D]
return conditioning
class LuminaCombinedTimestepCaptionEmbedding(nn.Module):
def __init__(self, hidden_size=4096, cross_attention_dim=2048, frequency_embedding_size=256):
super().__init__()
self.time_proj = Timesteps(
num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0
)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
self.caption_embedder = nn.Sequential(
nn.LayerNorm(cross_attention_dim),
nn.Linear(
cross_attention_dim,
hidden_size,
bias=True,
),
)
def forward(self, timestep, caption_feat, caption_mask):
# timestep embedding:
time_freq = self.time_proj(timestep)
time_embed = self.timestep_embedder(time_freq.to(dtype=self.timestep_embedder.linear_1.weight.dtype))
# caption condition embedding:
caption_mask_float = caption_mask.float().unsqueeze(-1)
caption_feats_pool = (caption_feat * caption_mask_float).sum(dim=1) / caption_mask_float.sum(dim=1)
caption_feats_pool = caption_feats_pool.to(caption_feat)
caption_embed = self.caption_embedder(caption_feats_pool)
conditioning = time_embed + caption_embed
return conditioning
class MochiCombinedTimestepCaptionEmbedding(nn.Module):
def __init__(
self,
embedding_dim: int,
pooled_projection_dim: int,
text_embed_dim: int,
time_embed_dim: int = 256,
num_attention_heads: int = 8,
) -> None:
super().__init__()
self.time_proj = Timesteps(num_channels=time_embed_dim, flip_sin_to_cos=True, downscale_freq_shift=0.0)
self.timestep_embedder = TimestepEmbedding(in_channels=time_embed_dim, time_embed_dim=embedding_dim)
self.pooler = MochiAttentionPool(
num_attention_heads=num_attention_heads, embed_dim=text_embed_dim, output_dim=embedding_dim
)
self.caption_proj = nn.Linear(text_embed_dim, pooled_projection_dim)
def forward(
self,
timestep: torch.LongTensor,
encoder_hidden_states: torch.Tensor,
encoder_attention_mask: torch.Tensor,
hidden_dtype: Optional[torch.dtype] = None,
):
time_proj = self.time_proj(timestep)
time_emb = self.timestep_embedder(time_proj.to(dtype=hidden_dtype))
pooled_projections = self.pooler(encoder_hidden_states, encoder_attention_mask)
caption_proj = self.caption_proj(encoder_hidden_states)
conditioning = time_emb + pooled_projections
return conditioning, caption_proj
class TextTimeEmbedding(nn.Module):
def __init__(self, encoder_dim: int, time_embed_dim: int, num_heads: int = 64):
super().__init__()
self.norm1 = nn.LayerNorm(encoder_dim)
self.pool = AttentionPooling(num_heads, encoder_dim)
self.proj = nn.Linear(encoder_dim, time_embed_dim)
self.norm2 = nn.LayerNorm(time_embed_dim)
def forward(self, hidden_states):
hidden_states = self.norm1(hidden_states)
hidden_states = self.pool(hidden_states)
hidden_states = self.proj(hidden_states)
hidden_states = self.norm2(hidden_states)
return hidden_states
class TextImageTimeEmbedding(nn.Module):
def __init__(self, text_embed_dim: int = 768, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.text_proj = nn.Linear(text_embed_dim, time_embed_dim)
self.text_norm = nn.LayerNorm(time_embed_dim)
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor):
# text
time_text_embeds = self.text_proj(text_embeds)
time_text_embeds = self.text_norm(time_text_embeds)
# image
time_image_embeds = self.image_proj(image_embeds)
return time_image_embeds + time_text_embeds
class ImageTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
def forward(self, image_embeds: torch.Tensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
return time_image_embeds
class ImageHintTimeEmbedding(nn.Module):
def __init__(self, image_embed_dim: int = 768, time_embed_dim: int = 1536):
super().__init__()
self.image_proj = nn.Linear(image_embed_dim, time_embed_dim)
self.image_norm = nn.LayerNorm(time_embed_dim)
self.input_hint_block = nn.Sequential(
nn.Conv2d(3, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 16, 3, padding=1),
nn.SiLU(),
nn.Conv2d(16, 32, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(32, 32, 3, padding=1),
nn.SiLU(),
nn.Conv2d(32, 96, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(96, 96, 3, padding=1),
nn.SiLU(),
nn.Conv2d(96, 256, 3, padding=1, stride=2),
nn.SiLU(),
nn.Conv2d(256, 4, 3, padding=1),
)
def forward(self, image_embeds: torch.Tensor, hint: torch.Tensor):
# image
time_image_embeds = self.image_proj(image_embeds)
time_image_embeds = self.image_norm(time_image_embeds)
hint = self.input_hint_block(hint)
return time_image_embeds, hint
class AttentionPooling(nn.Module):
# Copied from https://github.com/deep-floyd/IF/blob/2f91391f27dd3c468bf174be5805b4cc92980c0b/deepfloyd_if/model/nn.py#L54
def __init__(self, num_heads, embed_dim, dtype=None):
super().__init__()
self.dtype = dtype
self.positional_embedding = nn.Parameter(torch.randn(1, embed_dim) / embed_dim**0.5)
self.k_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.q_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.v_proj = nn.Linear(embed_dim, embed_dim, dtype=self.dtype)
self.num_heads = num_heads
self.dim_per_head = embed_dim // self.num_heads
def forward(self, x):
bs, length, width = x.size()
def shape(x):
# (bs, length, width) --> (bs, length, n_heads, dim_per_head)
x = x.view(bs, -1, self.num_heads, self.dim_per_head)
# (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
x = x.transpose(1, 2)
# (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
x = x.reshape(bs * self.num_heads, -1, self.dim_per_head)
# (bs*n_heads, length, dim_per_head) --> (bs*n_heads, dim_per_head, length)
x = x.transpose(1, 2)
return x
class_token = x.mean(dim=1, keepdim=True) + self.positional_embedding.to(x.dtype)
x = torch.cat([class_token, x], dim=1) # (bs, length+1, width)
# (bs*n_heads, class_token_length, dim_per_head)
q = shape(self.q_proj(class_token))
# (bs*n_heads, length+class_token_length, dim_per_head)
k = shape(self.k_proj(x))
v = shape(self.v_proj(x))
# (bs*n_heads, class_token_length, length+class_token_length):
scale = 1 / math.sqrt(math.sqrt(self.dim_per_head))
weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards
weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
# (bs*n_heads, dim_per_head, class_token_length)
a = torch.einsum("bts,bcs->bct", weight, v)
# (bs, length+1, width)
a = a.reshape(bs, -1, 1).transpose(1, 2)
return a[:, 0, :] # cls_token
class MochiAttentionPool(nn.Module):
def __init__(
self,
num_attention_heads: int,
embed_dim: int,
output_dim: Optional[int] = None,
) -> None:
super().__init__()
self.output_dim = output_dim or embed_dim
self.num_attention_heads = num_attention_heads
self.to_kv = nn.Linear(embed_dim, 2 * embed_dim)
self.to_q = nn.Linear(embed_dim, embed_dim)
self.to_out = nn.Linear(embed_dim, self.output_dim)
@staticmethod
def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor:
"""
Pool tokens in x using mask.
NOTE: We assume x does not require gradients.
Args:
x: (B, L, D) tensor of tokens.
mask: (B, L) boolean tensor indicating which tokens are not padding.
Returns:
pooled: (B, D) tensor of pooled tokens.
"""
assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens.
assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens.
mask = mask[:, :, None].to(dtype=x.dtype)
mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1)
pooled = (x * mask).sum(dim=1, keepdim=keepdim)
return pooled
def forward(self, x: torch.Tensor, mask: torch.BoolTensor) -> torch.Tensor:
r"""
Args:
x (`torch.Tensor`):
Tensor of shape `(B, S, D)` of input tokens.
mask (`torch.Tensor`):
Boolean ensor of shape `(B, S)` indicating which tokens are not padding.
Returns:
`torch.Tensor`:
`(B, D)` tensor of pooled tokens.
"""
D = x.size(2)
# Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L).
attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L).
attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L).
# Average non-padding token features. These will be used as the query.
x_pool = self.pool_tokens(x, mask, keepdim=True) # (B, 1, D)
# Concat pooled features to input sequence.
x = torch.cat([x_pool, x], dim=1) # (B, L+1, D)
# Compute queries, keys, values. Only the mean token is used to create a query.
kv = self.to_kv(x) # (B, L+1, 2 * D)
q = self.to_q(x[:, 0]) # (B, D)
# Extract heads.
head_dim = D // self.num_attention_heads
kv = kv.unflatten(2, (2, self.num_attention_heads, head_dim)) # (B, 1+L, 2, H, head_dim)
kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim)
k, v = kv.unbind(2) # (B, H, 1+L, head_dim)
q = q.unflatten(1, (self.num_attention_heads, head_dim)) # (B, H, head_dim)
q = q.unsqueeze(2) # (B, H, 1, head_dim)
# Compute attention.
x = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask, dropout_p=0.0) # (B, H, 1, head_dim)
# Concatenate heads and run output.
x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim)
x = self.to_out(x)
return x
def get_fourier_embeds_from_boundingbox(embed_dim, box):
"""
Args:
embed_dim: int
box: a 3-D tensor [B x N x 4] representing the bounding boxes for GLIGEN pipeline
Returns:
[B x N x embed_dim] tensor of positional embeddings
"""
batch_size, num_boxes = box.shape[:2]
emb = 100 ** (torch.arange(embed_dim) / embed_dim)
emb = emb[None, None, None].to(device=box.device, dtype=box.dtype)
emb = emb * box.unsqueeze(-1)
emb = torch.stack((emb.sin(), emb.cos()), dim=-1)
emb = emb.permute(0, 1, 3, 4, 2).reshape(batch_size, num_boxes, embed_dim * 2 * 4)
return emb
class GLIGENTextBoundingboxProjection(nn.Module):
def __init__(self, positive_len, out_dim, feature_type="text-only", fourier_freqs=8):
super().__init__()
self.positive_len = positive_len
self.out_dim = out_dim
self.fourier_embedder_dim = fourier_freqs
self.position_dim = fourier_freqs * 2 * 4 # 2: sin/cos, 4: xyxy
if isinstance(out_dim, tuple):
out_dim = out_dim[0]
if feature_type == "text-only":
self.linears = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
elif feature_type == "text-image":
self.linears_text = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.linears_image = nn.Sequential(
nn.Linear(self.positive_len + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_text_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_image_feature = torch.nn.Parameter(torch.zeros([self.positive_len]))
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
def forward(
self,
boxes,
masks,
positive_embeddings=None,
phrases_masks=None,
image_masks=None,
phrases_embeddings=None,
image_embeddings=None,
):
masks = masks.unsqueeze(-1)
# embedding position (it may includes padding as placeholder)
xyxy_embedding = get_fourier_embeds_from_boundingbox(self.fourier_embedder_dim, boxes) # B*N*4 -> B*N*C
# learnable null embedding
xyxy_null = self.null_position_feature.view(1, 1, -1)
# replace padding with learnable null embedding
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null
# positionet with text only information
if positive_embeddings is not None:
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1))
# positionet with text and image information
else:
phrases_masks = phrases_masks.unsqueeze(-1)
image_masks = image_masks.unsqueeze(-1)
# learnable null embedding
text_null = self.null_text_feature.view(1, 1, -1)
image_null = self.null_image_feature.view(1, 1, -1)
# replace padding with learnable null embedding
phrases_embeddings = phrases_embeddings * phrases_masks + (1 - phrases_masks) * text_null
image_embeddings = image_embeddings * image_masks + (1 - image_masks) * image_null
objs_text = self.linears_text(torch.cat([phrases_embeddings, xyxy_embedding], dim=-1))
objs_image = self.linears_image(torch.cat([image_embeddings, xyxy_embedding], dim=-1))
objs = torch.cat([objs_text, objs_image], dim=1)
return objs
class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
"""
For PixArt-Alpha.
Reference:
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
self.use_additional_conditions = use_additional_conditions
if use_additional_conditions:
self.additional_condition_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.resolution_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
self.aspect_ratio_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=size_emb_dim)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_dtype)) # (N, D)
if self.use_additional_conditions:
resolution_emb = self.additional_condition_proj(resolution.flatten()).to(hidden_dtype)
resolution_emb = self.resolution_embedder(resolution_emb).reshape(batch_size, -1)
aspect_ratio_emb = self.additional_condition_proj(aspect_ratio.flatten()).to(hidden_dtype)
aspect_ratio_emb = self.aspect_ratio_embedder(aspect_ratio_emb).reshape(batch_size, -1)
conditioning = timesteps_emb + torch.cat([resolution_emb, aspect_ratio_emb], dim=1)
else:
conditioning = timesteps_emb
return conditioning
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh"):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = nn.Linear(in_features=in_features, out_features=hidden_size, bias=True)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
elif act_fn == "silu_fp32":
self.act_1 = FP32SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = nn.Linear(in_features=hidden_size, out_features=out_features, bias=True)
def forward(self, caption):
hidden_states = self.linear_1(caption)
hidden_states = self.act_1(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
class IPAdapterPlusImageProjectionBlock(nn.Module):
def __init__(
self,
embed_dims: int = 768,
dim_head: int = 64,
heads: int = 16,
ffn_ratio: float = 4,
) -> None:
super().__init__()
from .attention import FeedForward
self.ln0 = nn.LayerNorm(embed_dims)
self.ln1 = nn.LayerNorm(embed_dims)
self.attn = Attention(
query_dim=embed_dims,
dim_head=dim_head,
heads=heads,
out_bias=False,
)
self.ff = nn.Sequential(
nn.LayerNorm(embed_dims),
FeedForward(embed_dims, embed_dims, activation_fn="gelu", mult=ffn_ratio, bias=False),
)
def forward(self, x, latents, residual):
encoder_hidden_states = self.ln0(x)
latents = self.ln1(latents)
encoder_hidden_states = torch.cat([encoder_hidden_states, latents], dim=-2)
latents = self.attn(latents, encoder_hidden_states) + residual
latents = self.ff(latents) + latents
return latents
class IPAdapterPlusImageProjection(nn.Module):
"""Resampler of IP-Adapter Plus.
Args:
embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
that is the same
number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
hidden_dims (int):
The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
Defaults to 16. num_queries (int):
The number of queries. Defaults to 8. ffn_ratio (float): The expansion ratio
of feedforward network hidden
layer channels. Defaults to 4.
"""
def __init__(
self,
embed_dims: int = 768,
output_dims: int = 1024,
hidden_dims: int = 1280,
depth: int = 4,
dim_head: int = 64,
heads: int = 16,
num_queries: int = 8,
ffn_ratio: float = 4,
) -> None:
super().__init__()
self.latents = nn.Parameter(torch.randn(1, num_queries, hidden_dims) / hidden_dims**0.5)
self.proj_in = nn.Linear(embed_dims, hidden_dims)
self.proj_out = nn.Linear(hidden_dims, output_dims)
self.norm_out = nn.LayerNorm(output_dims)
self.layers = nn.ModuleList(
[IPAdapterPlusImageProjectionBlock(hidden_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
x (torch.Tensor): Input Tensor.
Returns:
torch.Tensor: Output Tensor.
"""
latents = self.latents.repeat(x.size(0), 1, 1)
x = self.proj_in(x)
for block in self.layers:
residual = latents
latents = block(x, latents, residual)
latents = self.proj_out(latents)
return self.norm_out(latents)
class IPAdapterFaceIDPlusImageProjection(nn.Module):
"""FacePerceiverResampler of IP-Adapter Plus.
Args:
embed_dims (int): The feature dimension. Defaults to 768. output_dims (int): The number of output channels,
that is the same
number of the channels in the `unet.config.cross_attention_dim`. Defaults to 1024.
hidden_dims (int):
The number of hidden channels. Defaults to 1280. depth (int): The number of blocks. Defaults
to 8. dim_head (int): The number of head channels. Defaults to 64. heads (int): Parallel attention heads.
Defaults to 16. num_tokens (int): Number of tokens num_queries (int): The number of queries. Defaults to 8.
ffn_ratio (float): The expansion ratio of feedforward network hidden
layer channels. Defaults to 4.
ffproj_ratio (float): The expansion ratio of feedforward network hidden
layer channels (for ID embeddings). Defaults to 4.
"""
def __init__(
self,
embed_dims: int = 768,
output_dims: int = 768,
hidden_dims: int = 1280,
id_embeddings_dim: int = 512,
depth: int = 4,
dim_head: int = 64,
heads: int = 16,
num_tokens: int = 4,
num_queries: int = 8,
ffn_ratio: float = 4,
ffproj_ratio: int = 2,
) -> None:
super().__init__()
from .attention import FeedForward
self.num_tokens = num_tokens
self.embed_dim = embed_dims
self.clip_embeds = None
self.shortcut = False
self.shortcut_scale = 1.0
self.proj = FeedForward(id_embeddings_dim, embed_dims * num_tokens, activation_fn="gelu", mult=ffproj_ratio)
self.norm = nn.LayerNorm(embed_dims)
self.proj_in = nn.Linear(hidden_dims, embed_dims)
self.proj_out = nn.Linear(embed_dims, output_dims)
self.norm_out = nn.LayerNorm(output_dims)
self.layers = nn.ModuleList(
[IPAdapterPlusImageProjectionBlock(embed_dims, dim_head, heads, ffn_ratio) for _ in range(depth)]
)
def forward(self, id_embeds: torch.Tensor) -> torch.Tensor:
"""Forward pass.
Args:
id_embeds (torch.Tensor): Input Tensor (ID embeds).
Returns:
torch.Tensor: Output Tensor.
"""
id_embeds = id_embeds.to(self.clip_embeds.dtype)
id_embeds = self.proj(id_embeds)
id_embeds = id_embeds.reshape(-1, self.num_tokens, self.embed_dim)
id_embeds = self.norm(id_embeds)
latents = id_embeds
clip_embeds = self.proj_in(self.clip_embeds)
x = clip_embeds.reshape(-1, clip_embeds.shape[2], clip_embeds.shape[3])
for block in self.layers:
residual = latents
latents = block(x, latents, residual)
latents = self.proj_out(latents)
out = self.norm_out(latents)
if self.shortcut:
out = id_embeds + self.shortcut_scale * out
return out
class MultiIPAdapterImageProjection(nn.Module):
def __init__(self, IPAdapterImageProjectionLayers: Union[List[nn.Module], Tuple[nn.Module]]):
super().__init__()
self.image_projection_layers = nn.ModuleList(IPAdapterImageProjectionLayers)
def forward(self, image_embeds: List[torch.Tensor]):
projected_image_embeds = []
# currently, we accept `image_embeds` as
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim]
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim]
if not isinstance(image_embeds, list):
deprecation_message = (
"You have passed a tensor as `image_embeds`.This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `image_embeds` as a list of tensors to suppress this warning."
)
deprecate("image_embeds not a list", "1.0.0", deprecation_message, standard_warn=False)
image_embeds = [image_embeds.unsqueeze(1)]
if len(image_embeds) != len(self.image_projection_layers):
raise ValueError(
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}"
)
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers):
batch_size, num_images = image_embed.shape[0], image_embed.shape[1]
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:])
image_embed = image_projection_layer(image_embed)
image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:])
projected_image_embeds.append(image_embed)
return projected_image_embeds
|