File size: 45,893 Bytes
df4a4de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

import torch

from ..utils import is_peft_version, logging


logger = logging.get_logger(__name__)


def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5):
    # 1. get all state_dict_keys
    all_keys = list(state_dict.keys())
    sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]

    # 2. check if needs remapping, if not return original dict
    is_in_sgm_format = False
    for key in all_keys:
        if any(p in key for p in sgm_patterns):
            is_in_sgm_format = True
            break

    if not is_in_sgm_format:
        return state_dict

    # 3. Else remap from SGM patterns
    new_state_dict = {}
    inner_block_map = ["resnets", "attentions", "upsamplers"]

    # Retrieves # of down, mid and up blocks
    input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()

    for layer in all_keys:
        if "text" in layer:
            new_state_dict[layer] = state_dict.pop(layer)
        else:
            layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
            if sgm_patterns[0] in layer:
                input_block_ids.add(layer_id)
            elif sgm_patterns[1] in layer:
                middle_block_ids.add(layer_id)
            elif sgm_patterns[2] in layer:
                output_block_ids.add(layer_id)
            else:
                raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")

    input_blocks = {
        layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
        for layer_id in input_block_ids
    }
    middle_blocks = {
        layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
        for layer_id in middle_block_ids
    }
    output_blocks = {
        layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
        for layer_id in output_block_ids
    }

    # Rename keys accordingly
    for i in input_block_ids:
        block_id = (i - 1) // (unet_config.layers_per_block + 1)
        layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)

        for key in input_blocks[i]:
            inner_block_id = int(key.split(delimiter)[block_slice_pos])
            inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
            inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1]
                + [str(block_id), inner_block_key, inner_layers_in_block]
                + key.split(delimiter)[block_slice_pos + 1 :]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    for i in middle_block_ids:
        key_part = None
        if i == 0:
            key_part = [inner_block_map[0], "0"]
        elif i == 1:
            key_part = [inner_block_map[1], "0"]
        elif i == 2:
            key_part = [inner_block_map[0], "1"]
        else:
            raise ValueError(f"Invalid middle block id {i}.")

        for key in middle_blocks[i]:
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    for i in output_block_ids:
        block_id = i // (unet_config.layers_per_block + 1)
        layer_in_block_id = i % (unet_config.layers_per_block + 1)

        for key in output_blocks[i]:
            inner_block_id = int(key.split(delimiter)[block_slice_pos])
            inner_block_key = inner_block_map[inner_block_id]
            inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
            new_key = delimiter.join(
                key.split(delimiter)[: block_slice_pos - 1]
                + [str(block_id), inner_block_key, inner_layers_in_block]
                + key.split(delimiter)[block_slice_pos + 1 :]
            )
            new_state_dict[new_key] = state_dict.pop(key)

    if len(state_dict) > 0:
        raise ValueError("At this point all state dict entries have to be converted.")

    return new_state_dict


def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
    """
    Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.

    Args:
        state_dict (`dict`): The state dict to convert.
        unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
        text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
            "text_encoder".

    Returns:
        `tuple`: A tuple containing the converted state dict and a dictionary of alphas.
    """
    unet_state_dict = {}
    te_state_dict = {}
    te2_state_dict = {}
    network_alphas = {}

    # Check for DoRA-enabled LoRAs.
    dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
    dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
    dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
    if dora_present_in_unet or dora_present_in_te or dora_present_in_te2:
        if is_peft_version("<", "0.9.0"):
            raise ValueError(
                "You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
            )

    # Iterate over all LoRA weights.
    all_lora_keys = list(state_dict.keys())
    for key in all_lora_keys:
        if not key.endswith("lora_down.weight"):
            continue

        # Extract LoRA name.
        lora_name = key.split(".")[0]

        # Find corresponding up weight and alpha.
        lora_name_up = lora_name + ".lora_up.weight"
        lora_name_alpha = lora_name + ".alpha"

        # Handle U-Net LoRAs.
        if lora_name.startswith("lora_unet_"):
            diffusers_name = _convert_unet_lora_key(key)

            # Store down and up weights.
            unet_state_dict[diffusers_name] = state_dict.pop(key)
            unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Store DoRA scale if present.
            if dora_present_in_unet:
                dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
                unet_state_dict[
                    diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")
                ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))

        # Handle text encoder LoRAs.
        elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
            diffusers_name = _convert_text_encoder_lora_key(key, lora_name)

            # Store down and up weights for te or te2.
            if lora_name.startswith(("lora_te_", "lora_te1_")):
                te_state_dict[diffusers_name] = state_dict.pop(key)
                te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
            else:
                te2_state_dict[diffusers_name] = state_dict.pop(key)
                te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)

            # Store DoRA scale if present.
            if dora_present_in_te or dora_present_in_te2:
                dora_scale_key_to_replace_te = (
                    "_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
                )
                if lora_name.startswith(("lora_te_", "lora_te1_")):
                    te_state_dict[
                        diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
                    ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
                elif lora_name.startswith("lora_te2_"):
                    te2_state_dict[
                        diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
                    ] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))

        # Store alpha if present.
        if lora_name_alpha in state_dict:
            alpha = state_dict.pop(lora_name_alpha).item()
            network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))

    # Check if any keys remain.
    if len(state_dict) > 0:
        raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")

    logger.info("Non-diffusers checkpoint detected.")

    # Construct final state dict.
    unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
    te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
    te2_state_dict = (
        {f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
        if len(te2_state_dict) > 0
        else None
    )
    if te2_state_dict is not None:
        te_state_dict.update(te2_state_dict)

    new_state_dict = {**unet_state_dict, **te_state_dict}
    return new_state_dict, network_alphas


def _convert_unet_lora_key(key):
    """
    Converts a U-Net LoRA key to a Diffusers compatible key.
    """
    diffusers_name = key.replace("lora_unet_", "").replace("_", ".")

    # Replace common U-Net naming patterns.
    diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
    diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
    diffusers_name = diffusers_name.replace("middle.block", "mid_block")
    diffusers_name = diffusers_name.replace("mid.block", "mid_block")
    diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
    diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
    diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
    diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
    diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
    diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
    diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
    diffusers_name = diffusers_name.replace("proj.in", "proj_in")
    diffusers_name = diffusers_name.replace("proj.out", "proj_out")
    diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")

    # SDXL specific conversions.
    if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
        pattern = r"\.\d+(?=\D*$)"
        diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
    if ".in." in diffusers_name:
        diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
    if ".out." in diffusers_name:
        diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
    if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
        diffusers_name = diffusers_name.replace("op", "conv")
    if "skip" in diffusers_name:
        diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")

    # LyCORIS specific conversions.
    if "time.emb.proj" in diffusers_name:
        diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
    if "conv.shortcut" in diffusers_name:
        diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")

    # General conversions.
    if "transformer_blocks" in diffusers_name:
        if "attn1" in diffusers_name or "attn2" in diffusers_name:
            diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
            diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
        elif "ff" in diffusers_name:
            pass
    elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
        pass
    else:
        pass

    return diffusers_name


def _convert_text_encoder_lora_key(key, lora_name):
    """
    Converts a text encoder LoRA key to a Diffusers compatible key.
    """
    if lora_name.startswith(("lora_te_", "lora_te1_")):
        key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
    else:
        key_to_replace = "lora_te2_"

    diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
    diffusers_name = diffusers_name.replace("text.model", "text_model")
    diffusers_name = diffusers_name.replace("self.attn", "self_attn")
    diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
    diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
    diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
    diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
    diffusers_name = diffusers_name.replace("text.projection", "text_projection")

    if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
        pass
    elif "mlp" in diffusers_name:
        # Be aware that this is the new diffusers convention and the rest of the code might
        # not utilize it yet.
        diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
    return diffusers_name


def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
    """
    Gets the correct alpha name for the Diffusers model.
    """
    if lora_name_alpha.startswith("lora_unet_"):
        prefix = "unet."
    elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
        prefix = "text_encoder."
    else:
        prefix = "text_encoder_2."
    new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
    return {new_name: alpha}


# The utilities under `_convert_kohya_flux_lora_to_diffusers()`
# are taken from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
# All credits go to `kohya-ss`.
def _convert_kohya_flux_lora_to_diffusers(state_dict):
    def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
        if sds_key + ".lora_down.weight" not in sds_sd:
            return
        down_weight = sds_sd.pop(sds_key + ".lora_down.weight")

        # scale weight by alpha and dim
        rank = down_weight.shape[0]
        alpha = sds_sd.pop(sds_key + ".alpha").item()  # alpha is scalar
        scale = alpha / rank  # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here

        # calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
        scale_down = scale
        scale_up = 1.0
        while scale_down * 2 < scale_up:
            scale_down *= 2
            scale_up /= 2

        ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
        ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up

    def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
        if sds_key + ".lora_down.weight" not in sds_sd:
            return
        down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
        up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
        sd_lora_rank = down_weight.shape[0]

        # scale weight by alpha and dim
        alpha = sds_sd.pop(sds_key + ".alpha")
        scale = alpha / sd_lora_rank

        # calculate scale_down and scale_up
        scale_down = scale
        scale_up = 1.0
        while scale_down * 2 < scale_up:
            scale_down *= 2
            scale_up /= 2

        down_weight = down_weight * scale_down
        up_weight = up_weight * scale_up

        # calculate dims if not provided
        num_splits = len(ait_keys)
        if dims is None:
            dims = [up_weight.shape[0] // num_splits] * num_splits
        else:
            assert sum(dims) == up_weight.shape[0]

        # check upweight is sparse or not
        is_sparse = False
        if sd_lora_rank % num_splits == 0:
            ait_rank = sd_lora_rank // num_splits
            is_sparse = True
            i = 0
            for j in range(len(dims)):
                for k in range(len(dims)):
                    if j == k:
                        continue
                    is_sparse = is_sparse and torch.all(
                        up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0
                    )
                i += dims[j]
            if is_sparse:
                logger.info(f"weight is sparse: {sds_key}")

        # make ai-toolkit weight
        ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
        ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
        if not is_sparse:
            # down_weight is copied to each split
            ait_sd.update({k: down_weight for k in ait_down_keys})

            # up_weight is split to each split
            ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))})  # noqa: C416
        else:
            # down_weight is chunked to each split
            ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))})  # noqa: C416

            # up_weight is sparse: only non-zero values are copied to each split
            i = 0
            for j in range(len(dims)):
                ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
                i += dims[j]

    def _convert_sd_scripts_to_ai_toolkit(sds_sd):
        ait_sd = {}
        for i in range(19):
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_img_attn_proj",
                f"transformer.transformer_blocks.{i}.attn.to_out.0",
            )
            _convert_to_ai_toolkit_cat(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_img_attn_qkv",
                [
                    f"transformer.transformer_blocks.{i}.attn.to_q",
                    f"transformer.transformer_blocks.{i}.attn.to_k",
                    f"transformer.transformer_blocks.{i}.attn.to_v",
                ],
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_img_mlp_0",
                f"transformer.transformer_blocks.{i}.ff.net.0.proj",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_img_mlp_2",
                f"transformer.transformer_blocks.{i}.ff.net.2",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_img_mod_lin",
                f"transformer.transformer_blocks.{i}.norm1.linear",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_txt_attn_proj",
                f"transformer.transformer_blocks.{i}.attn.to_add_out",
            )
            _convert_to_ai_toolkit_cat(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_txt_attn_qkv",
                [
                    f"transformer.transformer_blocks.{i}.attn.add_q_proj",
                    f"transformer.transformer_blocks.{i}.attn.add_k_proj",
                    f"transformer.transformer_blocks.{i}.attn.add_v_proj",
                ],
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_txt_mlp_0",
                f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_txt_mlp_2",
                f"transformer.transformer_blocks.{i}.ff_context.net.2",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_double_blocks_{i}_txt_mod_lin",
                f"transformer.transformer_blocks.{i}.norm1_context.linear",
            )

        for i in range(38):
            _convert_to_ai_toolkit_cat(
                sds_sd,
                ait_sd,
                f"lora_unet_single_blocks_{i}_linear1",
                [
                    f"transformer.single_transformer_blocks.{i}.attn.to_q",
                    f"transformer.single_transformer_blocks.{i}.attn.to_k",
                    f"transformer.single_transformer_blocks.{i}.attn.to_v",
                    f"transformer.single_transformer_blocks.{i}.proj_mlp",
                ],
                dims=[3072, 3072, 3072, 12288],
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_single_blocks_{i}_linear2",
                f"transformer.single_transformer_blocks.{i}.proj_out",
            )
            _convert_to_ai_toolkit(
                sds_sd,
                ait_sd,
                f"lora_unet_single_blocks_{i}_modulation_lin",
                f"transformer.single_transformer_blocks.{i}.norm.linear",
            )

        remaining_keys = list(sds_sd.keys())
        te_state_dict = {}
        if remaining_keys:
            if not all(k.startswith("lora_te1") for k in remaining_keys):
                raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}")
            for key in remaining_keys:
                if not key.endswith("lora_down.weight"):
                    continue

                lora_name = key.split(".")[0]
                lora_name_up = f"{lora_name}.lora_up.weight"
                lora_name_alpha = f"{lora_name}.alpha"
                diffusers_name = _convert_text_encoder_lora_key(key, lora_name)

                if lora_name.startswith(("lora_te_", "lora_te1_")):
                    down_weight = sds_sd.pop(key)
                    sd_lora_rank = down_weight.shape[0]
                    te_state_dict[diffusers_name] = down_weight
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up)

                if lora_name_alpha in sds_sd:
                    alpha = sds_sd.pop(lora_name_alpha).item()
                    scale = alpha / sd_lora_rank

                    scale_down = scale
                    scale_up = 1.0
                    while scale_down * 2 < scale_up:
                        scale_down *= 2
                        scale_up /= 2

                    te_state_dict[diffusers_name] *= scale_down
                    te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up

        if len(sds_sd) > 0:
            logger.warning(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}")

        if te_state_dict:
            te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()}

        new_state_dict = {**ait_sd, **te_state_dict}
        return new_state_dict

    return _convert_sd_scripts_to_ai_toolkit(state_dict)


# Adapted from https://gist.github.com/Leommm-byte/6b331a1e9bd53271210b26543a7065d6
# Some utilities were reused from
# https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
def _convert_xlabs_flux_lora_to_diffusers(old_state_dict):
    new_state_dict = {}
    orig_keys = list(old_state_dict.keys())

    def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
        down_weight = sds_sd.pop(sds_key)
        up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))

        # calculate dims if not provided
        num_splits = len(ait_keys)
        if dims is None:
            dims = [up_weight.shape[0] // num_splits] * num_splits
        else:
            assert sum(dims) == up_weight.shape[0]

        # make ai-toolkit weight
        ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
        ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]

        # down_weight is copied to each split
        ait_sd.update({k: down_weight for k in ait_down_keys})

        # up_weight is split to each split
        ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))})  # noqa: C416

    for old_key in orig_keys:
        # Handle double_blocks
        if old_key.startswith(("diffusion_model.double_blocks", "double_blocks")):
            block_num = re.search(r"double_blocks\.(\d+)", old_key).group(1)
            new_key = f"transformer.transformer_blocks.{block_num}"

            if "processor.proj_lora1" in old_key:
                new_key += ".attn.to_out.0"
            elif "processor.proj_lora2" in old_key:
                new_key += ".attn.to_add_out"
            # Handle text latents.
            elif "processor.qkv_lora2" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [
                        f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
                        f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
                        f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
                    ],
                )
                # continue
            # Handle image latents.
            elif "processor.qkv_lora1" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [
                        f"transformer.transformer_blocks.{block_num}.attn.to_q",
                        f"transformer.transformer_blocks.{block_num}.attn.to_k",
                        f"transformer.transformer_blocks.{block_num}.attn.to_v",
                    ],
                )
                # continue

            if "down" in old_key:
                new_key += ".lora_A.weight"
            elif "up" in old_key:
                new_key += ".lora_B.weight"

        # Handle single_blocks
        elif old_key.startswith(("diffusion_model.single_blocks", "single_blocks")):
            block_num = re.search(r"single_blocks\.(\d+)", old_key).group(1)
            new_key = f"transformer.single_transformer_blocks.{block_num}"

            if "proj_lora" in old_key:
                new_key += ".proj_out"
            elif "qkv_lora" in old_key and "up" not in old_key:
                handle_qkv(
                    old_state_dict,
                    new_state_dict,
                    old_key,
                    [f"transformer.single_transformer_blocks.{block_num}.norm.linear"],
                )

            if "down" in old_key:
                new_key += ".lora_A.weight"
            elif "up" in old_key:
                new_key += ".lora_B.weight"

        else:
            # Handle other potential key patterns here
            new_key = old_key

        # Since we already handle qkv above.
        if "qkv" not in old_key:
            new_state_dict[new_key] = old_state_dict.pop(old_key)

    if len(old_state_dict) > 0:
        raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")

    return new_state_dict


def _convert_bfl_flux_control_lora_to_diffusers(original_state_dict):
    converted_state_dict = {}
    original_state_dict_keys = list(original_state_dict.keys())
    num_layers = 19
    num_single_layers = 38
    inner_dim = 3072
    mlp_ratio = 4.0

    def swap_scale_shift(weight):
        shift, scale = weight.chunk(2, dim=0)
        new_weight = torch.cat([scale, shift], dim=0)
        return new_weight

    for lora_key in ["lora_A", "lora_B"]:
        ## time_text_embed.timestep_embedder <-  time_in
        converted_state_dict[
            f"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight"
        ] = original_state_dict.pop(f"time_in.in_layer.{lora_key}.weight")
        if f"time_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[
                f"time_text_embed.timestep_embedder.linear_1.{lora_key}.bias"
            ] = original_state_dict.pop(f"time_in.in_layer.{lora_key}.bias")

        converted_state_dict[
            f"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight"
        ] = original_state_dict.pop(f"time_in.out_layer.{lora_key}.weight")
        if f"time_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[
                f"time_text_embed.timestep_embedder.linear_2.{lora_key}.bias"
            ] = original_state_dict.pop(f"time_in.out_layer.{lora_key}.bias")

        ## time_text_embed.text_embedder <- vector_in
        converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.weight"] = original_state_dict.pop(
            f"vector_in.in_layer.{lora_key}.weight"
        )
        if f"vector_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.bias"] = original_state_dict.pop(
                f"vector_in.in_layer.{lora_key}.bias"
            )

        converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.weight"] = original_state_dict.pop(
            f"vector_in.out_layer.{lora_key}.weight"
        )
        if f"vector_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.bias"] = original_state_dict.pop(
                f"vector_in.out_layer.{lora_key}.bias"
            )

        # guidance
        has_guidance = any("guidance" in k for k in original_state_dict)
        if has_guidance:
            converted_state_dict[
                f"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight"
            ] = original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.weight")
            if f"guidance_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[
                    f"time_text_embed.guidance_embedder.linear_1.{lora_key}.bias"
                ] = original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.bias")

            converted_state_dict[
                f"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight"
            ] = original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.weight")
            if f"guidance_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[
                    f"time_text_embed.guidance_embedder.linear_2.{lora_key}.bias"
                ] = original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.bias")

        # context_embedder
        converted_state_dict[f"context_embedder.{lora_key}.weight"] = original_state_dict.pop(
            f"txt_in.{lora_key}.weight"
        )
        if f"txt_in.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"context_embedder.{lora_key}.bias"] = original_state_dict.pop(
                f"txt_in.{lora_key}.bias"
            )

        # x_embedder
        converted_state_dict[f"x_embedder.{lora_key}.weight"] = original_state_dict.pop(f"img_in.{lora_key}.weight")
        if f"img_in.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"x_embedder.{lora_key}.bias"] = original_state_dict.pop(f"img_in.{lora_key}.bias")

    # double transformer blocks
    for i in range(num_layers):
        block_prefix = f"transformer_blocks.{i}."

        for lora_key in ["lora_A", "lora_B"]:
            # norms
            converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.img_mod.lin.{lora_key}.weight"
            )
            if f"double_blocks.{i}.img_mod.lin.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.img_mod.lin.{lora_key}.bias"
                )

            converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.txt_mod.lin.{lora_key}.weight"
            )
            if f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias"
                )

            # Q, K, V
            if lora_key == "lora_A":
                sample_lora_weight = original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight")
                converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_lora_weight])
                converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_lora_weight])
                converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_lora_weight])

                context_lora_weight = original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight")
                converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat(
                    [context_lora_weight]
                )
                converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat(
                    [context_lora_weight]
                )
                converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat(
                    [context_lora_weight]
                )
            else:
                sample_q, sample_k, sample_v = torch.chunk(
                    original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight"), 3, dim=0
                )
                converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_q])
                converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_k])
                converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_v])

                context_q, context_k, context_v = torch.chunk(
                    original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight"), 3, dim=0
                )
                converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat([context_q])
                converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat([context_k])
                converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat([context_v])

            if f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
                sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
                    original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias"), 3, dim=0
                )
                converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([sample_q_bias])
                converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([sample_k_bias])
                converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([sample_v_bias])

            if f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
                context_q_bias, context_k_bias, context_v_bias = torch.chunk(
                    original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias"), 3, dim=0
                )
                converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.bias"] = torch.cat([context_q_bias])
                converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.bias"] = torch.cat([context_k_bias])
                converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.bias"] = torch.cat([context_v_bias])

            # ff img_mlp
            converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.img_mlp.0.{lora_key}.weight"
            )
            if f"double_blocks.{i}.img_mlp.0.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.img_mlp.0.{lora_key}.bias"
                )

            converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.img_mlp.2.{lora_key}.weight"
            )
            if f"double_blocks.{i}.img_mlp.2.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.img_mlp.2.{lora_key}.bias"
                )

            converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.txt_mlp.0.{lora_key}.weight"
            )
            if f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias"
                )

            converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.txt_mlp.2.{lora_key}.weight"
            )
            if f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias"
                )

            # output projections.
            converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.img_attn.proj.{lora_key}.weight"
            )
            if f"double_blocks.{i}.img_attn.proj.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.img_attn.proj.{lora_key}.bias"
                )
            converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.weight"] = original_state_dict.pop(
                f"double_blocks.{i}.txt_attn.proj.{lora_key}.weight"
            )
            if f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.bias"] = original_state_dict.pop(
                    f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias"
                )

        # qk_norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.img_attn.norm.key_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
            f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
        )

    # single transfomer blocks
    for i in range(num_single_layers):
        block_prefix = f"single_transformer_blocks.{i}."

        for lora_key in ["lora_A", "lora_B"]:
            # norm.linear  <- single_blocks.0.modulation.lin
            converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.weight"] = original_state_dict.pop(
                f"single_blocks.{i}.modulation.lin.{lora_key}.weight"
            )
            if f"single_blocks.{i}.modulation.lin.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.bias"] = original_state_dict.pop(
                    f"single_blocks.{i}.modulation.lin.{lora_key}.bias"
                )

            # Q, K, V, mlp
            mlp_hidden_dim = int(inner_dim * mlp_ratio)
            split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)

            if lora_key == "lora_A":
                lora_weight = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight")
                converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([lora_weight])
                converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([lora_weight])
                converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([lora_weight])
                converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([lora_weight])

                if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
                    lora_bias = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias")
                    converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([lora_bias])
                    converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([lora_bias])
                    converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([lora_bias])
                    converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([lora_bias])
            else:
                q, k, v, mlp = torch.split(
                    original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight"), split_size, dim=0
                )
                converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([q])
                converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([k])
                converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([v])
                converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([mlp])

                if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
                    q_bias, k_bias, v_bias, mlp_bias = torch.split(
                        original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias"), split_size, dim=0
                    )
                    converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([q_bias])
                    converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([k_bias])
                    converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([v_bias])
                    converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([mlp_bias])

            # output projections.
            converted_state_dict[f"{block_prefix}proj_out.{lora_key}.weight"] = original_state_dict.pop(
                f"single_blocks.{i}.linear2.{lora_key}.weight"
            )
            if f"single_blocks.{i}.linear2.{lora_key}.bias" in original_state_dict_keys:
                converted_state_dict[f"{block_prefix}proj_out.{lora_key}.bias"] = original_state_dict.pop(
                    f"single_blocks.{i}.linear2.{lora_key}.bias"
                )

        # qk norm
        converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
            f"single_blocks.{i}.norm.query_norm.scale"
        )
        converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
            f"single_blocks.{i}.norm.key_norm.scale"
        )

    for lora_key in ["lora_A", "lora_B"]:
        converted_state_dict[f"proj_out.{lora_key}.weight"] = original_state_dict.pop(
            f"final_layer.linear.{lora_key}.weight"
        )
        if f"final_layer.linear.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"proj_out.{lora_key}.bias"] = original_state_dict.pop(
                f"final_layer.linear.{lora_key}.bias"
            )

        converted_state_dict[f"norm_out.linear.{lora_key}.weight"] = swap_scale_shift(
            original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.weight")
        )
        if f"final_layer.adaLN_modulation.1.{lora_key}.bias" in original_state_dict_keys:
            converted_state_dict[f"norm_out.linear.{lora_key}.bias"] = swap_scale_shift(
                original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.bias")
            )

    if len(original_state_dict) > 0:
        raise ValueError(f"`original_state_dict` should be empty at this point but has {original_state_dict.keys()=}.")

    for key in list(converted_state_dict.keys()):
        converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)

    return converted_state_dict