File size: 19,164 Bytes
98bebfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import rembg
import cv2
import numpy as np
import glm
import torch
from tqdm import tqdm
import torchvision
import torchvision.transforms.v2 as T
from models.lrm.utils import render_utils
import os
# get the background of the image
import torch
import numpy as np
import scipy
import cv2
from rembg import remove
def load_mipmap(env_path):
diffuse_path = os.path.join(env_path, "diffuse.pth")
diffuse = torch.load(diffuse_path, map_location=torch.device('cpu'))
specular = []
for i in range(6):
specular_path = os.path.join(env_path, f"specular_{i}.pth")
specular_tensor = torch.load(specular_path, map_location=torch.device('cpu'))
specular.append(specular_tensor)
return [specular, diffuse]
def get_background(img_tensor):
"""
Args:
img_tensor: 输入图像张量,形状为 (B, 3, H, W),数值范围为 [0, 1] 或 [0, 255]。
Returns:
mask_tensor: 输出掩码张量,形状为 (B, 1, H, W),二值化。
"""
B, C, H, W = img_tensor.shape
assert C == 3, "Input tensor must have 3 channels (RGB)."
# 将 tensor 转换为 numpy 格式 (B, H, W, C),并归一化到 [0, 255]
img_numpy = (img_tensor.permute(0, 2, 3, 1) * 255).byte().cpu().numpy() # (B, H, W, C)
masks = []
for i in range(B):
# 调用 rembg 生成掩码
mask = remove(img_numpy[i], only_mask=True)
# 转换为二值掩码
mask_binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
# 添加到结果列表 (H, W, 1)
masks.append(mask_binary[..., None])
# 将所有掩码组合成 numpy 数组,形状为 (B, H, W, 1)
masks = np.stack(masks, axis=0)
# 转换为 PyTorch 张量,形状为 (B, 1, H, W),值为 {0, 1}
mask_tensor = torch.from_numpy(masks).permute(0, 3, 1, 2).float() / 255.0
# breakpoint()
return mask_tensor
def get_render_cameras_video(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50):
"""
Get the rendering camera parameters.
"""
train_res = [512, 512]
cam_near_far = [0.1, 1000.0]
fovy = np.deg2rad(fov)
proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
all_mv = []
all_mvp = []
all_campos = []
if isinstance(elevation, tuple):
elevation_0 = np.deg2rad(elevation[0])
elevation_1 = np.deg2rad(elevation[1])
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_0)
x = radius * np.sin(azimuth) * np.sin(elevation_0)
y = radius * np.cos(elevation_0)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
for i in range(M//2):
azimuth = 2 * np.pi * i / (M // 2)
z = radius * np.cos(azimuth) * np.sin(elevation_1)
x = radius * np.sin(azimuth) * np.sin(elevation_1)
y = radius * np.cos(elevation_1)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
else:
# elevation = 90 - elevation
for i in range(M):
azimuth = 2 * np.pi * i / M
z = radius * np.cos(azimuth) * np.sin(elevation)
x = radius * np.sin(azimuth) * np.sin(elevation)
y = radius * np.cos(elevation)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
return all_mv, all_mvp, all_campos
def get_render_cameras_frames(batch_size=1, radius=4.0, azimuths=0, elevations=20.0, fov=30):
"""
Get the rendering camera parameters.
"""
train_res = [512, 512]
cam_near_far = [0.1, 1000.0]
fovy = np.deg2rad(fov)
proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
all_mv = []
all_mvp = []
all_campos = []
elevations = 90 - elevations
if isinstance(elevations, np.ndarray) or isinstance(elevations, torch.Tensor):
if isinstance(elevations, torch.Tensor):
elevations = elevations.cpu().numpy()
if isinstance(azimuths, torch.Tensor):
azimuths = azimuths.cpu().numpy()
azimuths = np.deg2rad(azimuths)
elevations = np.deg2rad(elevations)
for azi, ele in zip(azimuths, elevations):
z = radius * np.cos(azi) * np.sin(ele)
x = radius * np.sin(azi) * np.sin(ele)
y = radius * np.cos(ele)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
else:
z = radius * np.cos(azimuths) * np.sin(elevations)
x = radius * np.sin(azimuths) * np.sin(elevations)
y = radius * np.cos(elevations)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
mv = torch.from_numpy(np.array(view_matrix))
mvp = proj_mtx @ (mv) #w2c
campos = torch.linalg.inv(mv)[:3, 3]
all_mv.append(mv[None, ...].cuda())
all_mvp.append(mvp[None, ...].cuda())
all_campos.append(campos[None, ...].cuda())
# TODO, identity pose
identity_azimuths = np.array([0])
identity_elevations = np.array([90])
z = radius * np.cos(identity_azimuths) * np.sin(identity_elevations)
x = radius * np.sin(identity_azimuths) * np.sin(identity_elevations)
y = radius * np.cos(identity_elevations)
eye = glm.vec3(x, y, z)
at = glm.vec3(0.0, 0.0, 0.0)
up = glm.vec3(0.0, 1.0, 0.0)
view_matrix = glm.lookAt(eye, at, up)
identity_mv = torch.from_numpy(np.array(view_matrix))
all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
return all_mv, all_mvp, all_campos, identity_mv
def worldNormal2camNormal(rot_w2c, normal_map_world):
H,W,_ = normal_map_world.shape
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
normal_map_world = normal_map_world[...,:3]
# faster version
normal_map_flat = normal_map_world.view(-1, 3)
normal_map_camera_flat = torch.matmul(normal_map_flat.float(), rot_w2c.T.float())
# Reshape the transformed normal map back to its original shape
normal_map_camera = normal_map_camera_flat.view(normal_map_world.shape)
return normal_map_camera
def trans_normal(normal, RT_w2c, RT_w2c_target):
# normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
# normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)
relative_RT = torch.matmul(RT_w2c_target[:3,:3], torch.linalg.inv(RT_w2c[:3,:3]))
normal_target_cam = worldNormal2camNormal(relative_RT[:3,:3], normal)
return normal_target_cam
def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1,
is_flexicubes=False, render_mv=None, local_normal=False, identity_mv=None):
"""
Render frames from triplanes.
"""
frames = []
albedos = []
pbr_spec_lights = []
pbr_diffuse_lights = []
normals = []
alphas = []
for i in tqdm(range(0, render_cameras.shape[1])):
out = model.forward_geometry(
planes,
render_cameras[:, i:i+chunk_size],
camera_pos[:, i:i+chunk_size],
[[env]*chunk_size],
[[materials]*chunk_size],
render_size=render_size,
)
frame = out['pbr_img']
albedo = out['albedo']
pbr_spec_light = out['pbr_spec_light']
pbr_diffuse_light = out['pbr_diffuse_light']
normal = out['normal']
alpha = out['mask']
# breakpoint()
if local_normal:
# TODO global normal to local
target_w2c = render_mv[0,i,:3,:3]
identity_w2c = identity_mv[:3,:3]
# breakpoint()
# torchvision.utils.save_image((normal.permute(0,3,1,2)+1)/2, f"debug_output/global_normal.png")
normal = trans_normal(normal.squeeze(0), identity_w2c.cuda(), target_w2c.cuda())
normal = normal / torch.norm(normal, dim=-1, keepdim=True)
# torchvision.utils.save_image((normal.permute(2,0,1)+1)/2, f"debug_output/local_normal.png")
background_normal = torch.tensor([1,1,1], dtype=torch.float32, device=normal.device)
normal = normal.unsqueeze(0)
normal[...,0] *= -1
# breakpoint()
normal = normal * alpha.squeeze(0).permute(0,2,3,1) + background_normal * (1-alpha.squeeze(0).permute(0,2,3,1))
frames.append(frame)
albedos.append(albedo)
pbr_spec_lights.append(pbr_spec_light)
pbr_diffuse_lights.append(pbr_diffuse_light)
normals.append(normal)
alphas.append(alpha)
frames = torch.cat(frames, dim=1)[0] # we suppose batch size is always 1
alphas = torch.cat(alphas, dim=1)[0]
albedos = torch.cat(albedos, dim=1)[0]
pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0]
pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0]
normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3]
return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas
# from https://github.com/cubiq/ComfyUI_essentials
def mask_fix(mask, erode_dilate=0, smooth=0, remove_isolated_pixels=0, blur=0, fill_holes=0):
masks = []
for m in mask:
# erode and dilate
if erode_dilate != 0:
if erode_dilate < 0:
m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate)))
else:
m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate)))
# fill holes
if fill_holes > 0:
#m = torch.from_numpy(scipy.ndimage.binary_fill_holes(m.cpu().numpy(), structure=np.ones((fill_holes,fill_holes)))).float()
m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes)))
# remove isolated pixels
if remove_isolated_pixels > 0:
m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels)))
# smooth the mask
if smooth > 0:
if smooth % 2 == 0:
smooth += 1
m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0)
# blur the mask
if blur > 0:
if blur % 2 == 0:
blur += 1
m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0)
masks.append(m.float())
masks = torch.stack(masks, dim=0).float()
return masks
class NormalTransfer:
def __init__(self):
self.identity_w2c = torch.tensor([
[0.0, 0.0, 1.0, 0.0],
[ 0.0, 1.0, 0.0, 0.0],
[-1.0, 0.0, 0.0, 4.5]]).float()
def look_at(self,camera_position, target_position, up_vector=np.array([0, 0, 1])):
forward = camera_position - target_position
forward = forward / np.linalg.norm(forward)
right = np.cross(up_vector, forward)
right = right / np.linalg.norm(right)
up = np.cross(forward, right)
rotation_matrix = np.array([right, up, forward]).T
translation_matrix = np.eye(4)
translation_matrix[:3, 3] = -camera_position
rotation_homogeneous = np.eye(4)
rotation_homogeneous[:3, :3] = rotation_matrix
w2c = rotation_homogeneous @ translation_matrix
return w2c
def generate_target_pose(self, azimuths_deg, elevations_deg, radius=4.5):
if isinstance(azimuths_deg, torch.Tensor):
azimuths_deg = azimuths_deg.cpu().numpy()
if isinstance(elevations_deg, torch.Tensor):
elevations_deg = elevations_deg.cpu().numpy()
azimuths = np.deg2rad(azimuths_deg)
elevations = np.deg2rad(elevations_deg)
x = radius * np.cos(azimuths) * np.cos(elevations)
y = radius * np.sin(azimuths) * np.cos(elevations)
z = radius * np.sin(elevations)
camera_positions = np.stack([x, y, z], axis=-1)
target_position = np.array([0, 0, 0]) # 目标点位置
# 为每个相机位置生成 w2c 矩阵
w2c_matrices = [self.look_at(cam_pos, target_position) for cam_pos in camera_positions]
w2c_matrices = np.stack(w2c_matrices, axis=0)
return w2c_matrices
def convert_to_blender(self, pose):
# Swap the y and z axes
w2c_opengl = pose
w2c_opengl[[1, 2], :] = w2c_opengl[[2, 1], :]
# Invert the y axis
w2c_opengl[1] *= -1
R = w2c_opengl[:3, :3]
t = w2c_opengl[:3, 3]
cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
R = R.T
t = -R @ t
R_world2cv = cam_rec @ R
t_world2cv = cam_rec @ t
RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
return RT
def worldNormal2camNormal(self, rot_w2c, normal_map_world):
H,W,_ = normal_map_world.shape
# normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
normal_map_world = normal_map_world[...,:3]
# faster version
normal_map_flat = normal_map_world.contiguous().view(-1, 3)
normal_map_camera_flat = torch.matmul(normal_map_flat.float(), rot_w2c.T.float())
# Reshape the transformed normal map back to its original shape
normal_map_camera = normal_map_camera_flat.view(normal_map_world.shape)
return normal_map_camera
def trans_normal(self, normal, RT_w2c, RT_w2c_target):
"""
:param normal: (H,W,3), torch tensor, range [-1,1]
:param RT_w2c: (4,4), torch tensor, world to camera
:param RT_w2c_target: (4,4), torch tensor, world to camera
:return: normal_target_cam: (H,W,3), torch tensor, range [-1,1]
"""
relative_RT = torch.matmul(RT_w2c_target[:3,:3], torch.linalg.inv(RT_w2c[:3,:3]))
normal_target_cam = self.worldNormal2camNormal(relative_RT[:3,:3], normal)
return normal_target_cam
def trans_local_2_global(self, normal_local, azimuths_deg, elevations_deg, radius=4.5, for_lotus=True):
"""
:param normal_local: (B,H,W,3), torch tensor, range [-1,1]
:param azimuths_deg: (B,), numpy array, range [0,360]
:param elevations_deg: (B,), numpy array, range [-90,90]
:param radius: float, default 4.5
:return: global_normal: (B,H,W,3), torch tensor, range [-1,1]
"""
# print(f"normal_local.shape:{normal_local.shape}")
# print(f"azimuths_deg.shape:{azimuths_deg.shape}")
# print(f"elevations_deg.shape:{elevations_deg.shape}")
assert normal_local.shape[0] == azimuths_deg.shape[0] == elevations_deg.shape[0]
identity_w2c = self.identity_w2c
# generate target pose
target_w2c = self.generate_target_pose(azimuths_deg, elevations_deg, radius)
target_w2c = torch.from_numpy(np.stack([self.convert_to_blender(w2c) for w2c in target_w2c])).float()
global_normal = []
# transform normal
for i in range(normal_local.shape[0]):
normal_local_i = normal_local[i]
normal_zero123 = self.trans_normal(normal_local_i, target_w2c[i], identity_w2c)
global_normal.append(normal_zero123)
global_normal = torch.stack(global_normal, dim=0)
if for_lotus:
global_normal[...,0] *= -1
global_normal = global_normal / torch.norm(global_normal, dim=-1, keepdim=True)
return global_normal
def trans_global_2_local(self, normal_local, azimuths_deg, elevations_deg, radius=4.5):
"""
:param normal_global: (B,H,W,3), torch tensor, range [-1,1]
:param azimuths_deg: (B,), numpy array, range [0,360]
:param elevations_deg: (B,), numpy array, range [-90,90]
:param radius: float, default 4.5
:return: local_normal: (B,H,W,3), torch tensor, range [-1,1]
"""
print(f"normal_local.shape:{normal_local.shape}")
print(f"azimuths_deg.shape:{azimuths_deg.shape}")
print(f"elevations_deg.shape:{elevations_deg.shape}")
assert normal_local.shape[0] == azimuths_deg.shape[0] == elevations_deg.shape[0]
identity_w2c = self.identity_w2c
# generate target pose
target_w2c = self.generate_target_pose(azimuths_deg, elevations_deg, radius)
target_w2c = torch.from_numpy(np.stack([w2c for w2c in target_w2c])).float()
local_normal = []
# transform normal
for i in range(normal_local.shape[0]):
normal_local_i = normal_local[i]
normal = self.trans_normal(normal_local_i, identity_w2c, target_w2c[i])
local_normal.append(normal)
local_normal = torch.stack(local_normal, dim=0)
# global_normal[...,0] *= -1
local_normal = local_normal / torch.norm(local_normal, dim=-1, keepdim=True)
return local_normal |