File size: 19,164 Bytes
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import rembg
import cv2
import numpy as np
import glm
import torch
from tqdm import tqdm
import torchvision
import torchvision.transforms.v2 as T
from models.lrm.utils import render_utils
import os
# get the background of the image
import torch
import numpy as np
import scipy
import cv2
from rembg import remove


def load_mipmap(env_path):
    diffuse_path = os.path.join(env_path, "diffuse.pth")
    diffuse = torch.load(diffuse_path, map_location=torch.device('cpu'))

    specular = []
    for i in range(6):
        specular_path = os.path.join(env_path, f"specular_{i}.pth")
        specular_tensor = torch.load(specular_path, map_location=torch.device('cpu'))
        specular.append(specular_tensor)
    return [specular, diffuse]

def get_background(img_tensor):
    """
    Args:
        img_tensor: 输入图像张量,形状为 (B, 3, H, W),数值范围为 [0, 1] 或 [0, 255]。
    Returns:
        mask_tensor: 输出掩码张量,形状为 (B, 1, H, W),二值化。
    """
    B, C, H, W = img_tensor.shape
    assert C == 3, "Input tensor must have 3 channels (RGB)."
    
    # 将 tensor 转换为 numpy 格式 (B, H, W, C),并归一化到 [0, 255]
    img_numpy = (img_tensor.permute(0, 2, 3, 1) * 255).byte().cpu().numpy()  # (B, H, W, C)
    
    masks = []
    for i in range(B):
        # 调用 rembg 生成掩码
        mask = remove(img_numpy[i], only_mask=True)
        
        # 转换为二值掩码
        mask_binary = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY)[1]
        
        # 添加到结果列表 (H, W, 1)
        masks.append(mask_binary[..., None])
    
    # 将所有掩码组合成 numpy 数组,形状为 (B, H, W, 1)
    masks = np.stack(masks, axis=0)
    
    # 转换为 PyTorch 张量,形状为 (B, 1, H, W),值为 {0, 1}
    mask_tensor = torch.from_numpy(masks).permute(0, 3, 1, 2).float() / 255.0
    # breakpoint()
    return mask_tensor

def get_render_cameras_video(batch_size=1, M=120, radius=4.0, elevation=20.0, is_flexicubes=False, fov=50):
    """
    Get the rendering camera parameters.
    """
    train_res = [512, 512]
    cam_near_far = [0.1, 1000.0]
    fovy = np.deg2rad(fov)
    proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
    all_mv = []
    all_mvp = []
    all_campos = []
    if isinstance(elevation, tuple):
        elevation_0 = np.deg2rad(elevation[0])
        elevation_1 = np.deg2rad(elevation[1])
        for i in range(M//2):
            azimuth = 2 * np.pi * i / (M // 2)
            z = radius * np.cos(azimuth) * np.sin(elevation_0)
            x = radius * np.sin(azimuth) * np.sin(elevation_0)
            y = radius * np.cos(elevation_0)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
        for i in range(M//2):
            azimuth = 2 * np.pi * i / (M // 2)
            z = radius * np.cos(azimuth) * np.sin(elevation_1)
            x = radius * np.sin(azimuth) * np.sin(elevation_1)
            y = radius * np.cos(elevation_1)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
    else:
        # elevation = 90 - elevation
        for i in range(M):
            azimuth = 2 * np.pi * i / M
            z = radius * np.cos(azimuth) * np.sin(elevation)
            x = radius * np.sin(azimuth) * np.sin(elevation)
            y = radius * np.cos(elevation)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())
    all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
    all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
    all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
    return all_mv, all_mvp, all_campos

def get_render_cameras_frames(batch_size=1, radius=4.0, azimuths=0, elevations=20.0, fov=30):
    """
    Get the rendering camera parameters.
    """
    train_res = [512, 512]
    cam_near_far = [0.1, 1000.0]
    fovy = np.deg2rad(fov)
    proj_mtx = render_utils.perspective(fovy, train_res[1] / train_res[0], cam_near_far[0], cam_near_far[1])
    all_mv = []
    all_mvp = []
    all_campos = []
    elevations = 90 - elevations
    if isinstance(elevations, np.ndarray) or isinstance(elevations, torch.Tensor):
        if isinstance(elevations, torch.Tensor):
            elevations = elevations.cpu().numpy()
        if isinstance(azimuths, torch.Tensor):
            azimuths = azimuths.cpu().numpy()
        azimuths = np.deg2rad(azimuths)
        elevations = np.deg2rad(elevations)
        for azi, ele in zip(azimuths, elevations):
            z = radius * np.cos(azi) * np.sin(ele)
            x = radius * np.sin(azi) * np.sin(ele)
            y = radius * np.cos(ele)

            eye = glm.vec3(x, y, z)
            at = glm.vec3(0.0, 0.0, 0.0)
            up = glm.vec3(0.0, 1.0, 0.0)
            view_matrix = glm.lookAt(eye, at, up)
            mv = torch.from_numpy(np.array(view_matrix))
            mvp   = proj_mtx @ (mv)  #w2c
            campos = torch.linalg.inv(mv)[:3, 3]
            all_mv.append(mv[None, ...].cuda())
            all_mvp.append(mvp[None, ...].cuda())
            all_campos.append(campos[None, ...].cuda())

    else:
        z = radius * np.cos(azimuths) * np.sin(elevations)
        x = radius * np.sin(azimuths) * np.sin(elevations)
        y = radius * np.cos(elevations)

        eye = glm.vec3(x, y, z)
        at = glm.vec3(0.0, 0.0, 0.0)
        up = glm.vec3(0.0, 1.0, 0.0)
        view_matrix = glm.lookAt(eye, at, up)
        mv = torch.from_numpy(np.array(view_matrix))
        mvp   = proj_mtx @ (mv)  #w2c
        campos = torch.linalg.inv(mv)[:3, 3]
        all_mv.append(mv[None, ...].cuda())
        all_mvp.append(mvp[None, ...].cuda())
        all_campos.append(campos[None, ...].cuda())
    
    # TODO, identity pose
    identity_azimuths = np.array([0])
    identity_elevations = np.array([90])
    z = radius * np.cos(identity_azimuths) * np.sin(identity_elevations)
    x = radius * np.sin(identity_azimuths) * np.sin(identity_elevations)
    y = radius * np.cos(identity_elevations)
    eye = glm.vec3(x, y, z)
    at = glm.vec3(0.0, 0.0, 0.0)
    up = glm.vec3(0.0, 1.0, 0.0)
    view_matrix = glm.lookAt(eye, at, up)
    identity_mv = torch.from_numpy(np.array(view_matrix))

    all_mv = torch.stack(all_mv, dim=0).unsqueeze(0).squeeze(2)
    all_mvp = torch.stack(all_mvp, dim=0).unsqueeze(0).squeeze(2)
    all_campos = torch.stack(all_campos, dim=0).unsqueeze(0).squeeze(2)
    return all_mv, all_mvp, all_campos, identity_mv


def worldNormal2camNormal(rot_w2c, normal_map_world):
    H,W,_ = normal_map_world.shape
    # normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
    normal_map_world = normal_map_world[...,:3]
    # faster version
    normal_map_flat = normal_map_world.view(-1, 3)
    normal_map_camera_flat = torch.matmul(normal_map_flat.float(), rot_w2c.T.float())

    # Reshape the transformed normal map back to its original shape
    normal_map_camera = normal_map_camera_flat.view(normal_map_world.shape)

    return normal_map_camera


def trans_normal(normal, RT_w2c, RT_w2c_target):

    # normal_world = camNormal2worldNormal(np.linalg.inv(RT_w2c[:3,:3]), normal)
    # normal_target_cam = worldNormal2camNormal(RT_w2c_target[:3,:3], normal_world)

    relative_RT = torch.matmul(RT_w2c_target[:3,:3], torch.linalg.inv(RT_w2c[:3,:3]))
    normal_target_cam = worldNormal2camNormal(relative_RT[:3,:3], normal)

    return normal_target_cam

def render_frames(model, planes, render_cameras, camera_pos, env, materials, render_size=512, chunk_size=1, 
                  is_flexicubes=False, render_mv=None, local_normal=False, identity_mv=None):
    """
    Render frames from triplanes.
    """
    frames = []
    albedos = []
    pbr_spec_lights = []
    pbr_diffuse_lights = []
    normals = []
    alphas = []
    for i in tqdm(range(0, render_cameras.shape[1])):
        out = model.forward_geometry(
            planes,
            render_cameras[:, i:i+chunk_size],
            camera_pos[:, i:i+chunk_size],
            [[env]*chunk_size],
            [[materials]*chunk_size],
            render_size=render_size,
        )
        frame = out['pbr_img']
        albedo = out['albedo']
        pbr_spec_light = out['pbr_spec_light']
        pbr_diffuse_light = out['pbr_diffuse_light']
        normal = out['normal']
        alpha = out['mask']
        # breakpoint()
        if local_normal:
            # TODO global normal to local
            target_w2c = render_mv[0,i,:3,:3]
            identity_w2c = identity_mv[:3,:3]
            # breakpoint()
            # torchvision.utils.save_image((normal.permute(0,3,1,2)+1)/2, f"debug_output/global_normal.png")
            normal = trans_normal(normal.squeeze(0), identity_w2c.cuda(), target_w2c.cuda())
            normal = normal / torch.norm(normal, dim=-1, keepdim=True)
            # torchvision.utils.save_image((normal.permute(2,0,1)+1)/2, f"debug_output/local_normal.png")
            background_normal = torch.tensor([1,1,1], dtype=torch.float32, device=normal.device)
            normal = normal.unsqueeze(0)
            normal[...,0] *= -1
            # breakpoint()
            normal = normal * alpha.squeeze(0).permute(0,2,3,1) + background_normal * (1-alpha.squeeze(0).permute(0,2,3,1))
        frames.append(frame)
        albedos.append(albedo)
        pbr_spec_lights.append(pbr_spec_light)
        pbr_diffuse_lights.append(pbr_diffuse_light)
        normals.append(normal)
        alphas.append(alpha)

    frames = torch.cat(frames, dim=1)[0]    # we suppose batch size is always 1
    alphas = torch.cat(alphas, dim=1)[0]    
    albedos = torch.cat(albedos, dim=1)[0]
    pbr_spec_lights = torch.cat(pbr_spec_lights, dim=1)[0]
    pbr_diffuse_lights = torch.cat(pbr_diffuse_lights, dim=1)[0]
    normals = torch.cat(normals, dim=0).permute(0,3,1,2)[:,:3]
    return frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas

# from https://github.com/cubiq/ComfyUI_essentials
def mask_fix(mask, erode_dilate=0, smooth=0, remove_isolated_pixels=0, blur=0, fill_holes=0):
    masks = []
    for m in mask:
        # erode and dilate
        if erode_dilate != 0:
            if erode_dilate < 0:
                m = torch.from_numpy(scipy.ndimage.grey_erosion(m.cpu().numpy(), size=(-erode_dilate, -erode_dilate)))
            else:
                m = torch.from_numpy(scipy.ndimage.grey_dilation(m.cpu().numpy(), size=(erode_dilate, erode_dilate)))

        # fill holes
        if fill_holes > 0:
            #m = torch.from_numpy(scipy.ndimage.binary_fill_holes(m.cpu().numpy(), structure=np.ones((fill_holes,fill_holes)))).float()
            m = torch.from_numpy(scipy.ndimage.grey_closing(m.cpu().numpy(), size=(fill_holes, fill_holes)))

        # remove isolated pixels
        if remove_isolated_pixels > 0:
            m = torch.from_numpy(scipy.ndimage.grey_opening(m.cpu().numpy(), size=(remove_isolated_pixels, remove_isolated_pixels)))

        # smooth the mask
        if smooth > 0:
            if smooth % 2 == 0:
                smooth += 1
            m = T.functional.gaussian_blur((m > 0.5).unsqueeze(0), smooth).squeeze(0)

        # blur the mask
        if blur > 0:
            if blur % 2 == 0:
                blur += 1
            m = T.functional.gaussian_blur(m.float().unsqueeze(0), blur).squeeze(0)

        masks.append(m.float())

    masks = torch.stack(masks, dim=0).float()

    return masks


class NormalTransfer:
    def __init__(self):
        self.identity_w2c = torch.tensor([
                                        [0.0,  0.0,  1.0,  0.0],
                                        [ 0.0,  1.0,  0.0,  0.0],
                                        [-1.0, 0.0,  0.0,  4.5]]).float()

    def look_at(self,camera_position, target_position, up_vector=np.array([0, 0, 1])):
        forward = camera_position - target_position
        forward = forward / np.linalg.norm(forward)

        right = np.cross(up_vector, forward)
        right = right / np.linalg.norm(right)

        up = np.cross(forward, right)

        rotation_matrix = np.array([right, up, forward]).T

        translation_matrix = np.eye(4)
        translation_matrix[:3, 3] = -camera_position

        rotation_homogeneous = np.eye(4)
        rotation_homogeneous[:3, :3] = rotation_matrix

        w2c = rotation_homogeneous @ translation_matrix
        return w2c
    
    def generate_target_pose(self, azimuths_deg, elevations_deg, radius=4.5):
        if isinstance(azimuths_deg, torch.Tensor):
            azimuths_deg = azimuths_deg.cpu().numpy()
        if isinstance(elevations_deg, torch.Tensor):
            elevations_deg = elevations_deg.cpu().numpy()
        azimuths = np.deg2rad(azimuths_deg)
        elevations = np.deg2rad(elevations_deg)

        x = radius * np.cos(azimuths) * np.cos(elevations)
        y = radius * np.sin(azimuths) * np.cos(elevations)
        z = radius * np.sin(elevations)
        camera_positions = np.stack([x, y, z], axis=-1)

        target_position = np.array([0, 0, 0])  # 目标点位置

        # 为每个相机位置生成 w2c 矩阵
        w2c_matrices = [self.look_at(cam_pos, target_position) for cam_pos in camera_positions]
        w2c_matrices = np.stack(w2c_matrices, axis=0)
        return w2c_matrices
    
    def convert_to_blender(self, pose):
        # Swap the y and z axes
        w2c_opengl = pose
        w2c_opengl[[1, 2], :] = w2c_opengl[[2, 1], :]
        
        # Invert the y axis
        w2c_opengl[1] *= -1
        R = w2c_opengl[:3, :3]
        t = w2c_opengl[:3, 3]

        cam_rec = np.asarray([[1, 0, 0], [0, -1, 0], [0, 0, -1]], np.float32)
        R = R.T
        t = -R @ t
        R_world2cv = cam_rec @ R
        t_world2cv = cam_rec @ t

        RT = np.concatenate([R_world2cv,t_world2cv[:,None]],1)
        return RT

    def worldNormal2camNormal(self, rot_w2c, normal_map_world):
        H,W,_ = normal_map_world.shape
        # normal_img = np.matmul(rot_w2c[None, :, :], worldNormal.reshape(-1,3)[:, :, None]).reshape([H, W, 3])
        normal_map_world = normal_map_world[...,:3]
        # faster version
        normal_map_flat = normal_map_world.contiguous().view(-1, 3)

        normal_map_camera_flat = torch.matmul(normal_map_flat.float(), rot_w2c.T.float())

        # Reshape the transformed normal map back to its original shape
        normal_map_camera = normal_map_camera_flat.view(normal_map_world.shape)

        return normal_map_camera

    def trans_normal(self, normal, RT_w2c, RT_w2c_target):
        """
        :param normal: (H,W,3), torch tensor, range [-1,1]
        :param RT_w2c: (4,4), torch tensor, world to camera
        :param RT_w2c_target: (4,4), torch tensor, world to camera
        :return: normal_target_cam: (H,W,3), torch tensor, range [-1,1]
        """
        relative_RT = torch.matmul(RT_w2c_target[:3,:3], torch.linalg.inv(RT_w2c[:3,:3]))
        normal_target_cam = self.worldNormal2camNormal(relative_RT[:3,:3], normal)

        return normal_target_cam

    def trans_local_2_global(self, normal_local, azimuths_deg, elevations_deg, radius=4.5, for_lotus=True):
        """
        :param normal_local: (B,H,W,3), torch tensor, range [-1,1]
        :param azimuths_deg: (B,), numpy array, range [0,360]
        :param elevations_deg: (B,), numpy array, range [-90,90]
        :param radius: float, default 4.5
        :return: global_normal: (B,H,W,3), torch tensor, range [-1,1]

        """
        # print(f"normal_local.shape:{normal_local.shape}")
        # print(f"azimuths_deg.shape:{azimuths_deg.shape}")
        # print(f"elevations_deg.shape:{elevations_deg.shape}")
        assert normal_local.shape[0] == azimuths_deg.shape[0] == elevations_deg.shape[0]
        identity_w2c = self.identity_w2c

        # generate target pose
        target_w2c = self.generate_target_pose(azimuths_deg, elevations_deg, radius)
        target_w2c = torch.from_numpy(np.stack([self.convert_to_blender(w2c) for w2c in target_w2c])).float()
        global_normal = []

        # transform normal
        for i in range(normal_local.shape[0]):
            normal_local_i = normal_local[i]
            normal_zero123 = self.trans_normal(normal_local_i, target_w2c[i], identity_w2c)
            global_normal.append(normal_zero123)

        global_normal = torch.stack(global_normal, dim=0)
        if for_lotus:
            global_normal[...,0] *= -1
        global_normal = global_normal / torch.norm(global_normal, dim=-1, keepdim=True)
        return global_normal

    def trans_global_2_local(self, normal_local, azimuths_deg, elevations_deg, radius=4.5):
        """
        :param normal_global: (B,H,W,3), torch tensor, range [-1,1]
        :param azimuths_deg: (B,), numpy array, range [0,360]
        :param elevations_deg: (B,), numpy array, range [-90,90]
        :param radius: float, default 4.5
        :return: local_normal: (B,H,W,3), torch tensor, range [-1,1]

        """
        print(f"normal_local.shape:{normal_local.shape}")
        print(f"azimuths_deg.shape:{azimuths_deg.shape}")
        print(f"elevations_deg.shape:{elevations_deg.shape}")
        assert normal_local.shape[0] == azimuths_deg.shape[0] == elevations_deg.shape[0]
        identity_w2c = self.identity_w2c

        # generate target pose
        target_w2c = self.generate_target_pose(azimuths_deg, elevations_deg, radius)
        target_w2c = torch.from_numpy(np.stack([w2c for w2c in target_w2c])).float()
        local_normal = []

        # transform normal
        for i in range(normal_local.shape[0]):
            normal_local_i = normal_local[i]
            normal = self.trans_normal(normal_local_i, identity_w2c, target_w2c[i])
            local_normal.append(normal)

        local_normal = torch.stack(local_normal, dim=0)
        # global_normal[...,0] *= -1
        local_normal = local_normal / torch.norm(local_normal, dim=-1, keepdim=True)
        return local_normal