File size: 9,000 Bytes
98bebfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from diffusers import HeunDiscreteScheduler
from diffusers import FluxPipeline
from pytorch_lightning import seed_everything
import os
import time
from models.lrm.utils.infer_util import save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.camera_util import get_flux_input_cameras
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
from utils.tool import NormalTransfer, load_mipmap
from utils.tool import get_background, get_render_cameras_video, render_frames

device = "cuda"
resolution = 512
save_dir = "./outputs"
normal_transfer = NormalTransfer()
isomer_azimuths = torch.from_numpy(np.array([0, 90, 180, 270])).float().to(device)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).float().to(device)
isomer_radius = 4.5
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)

# model initialization and loading
# flux
flux_pipe = FluxPipeline.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev", torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')

flux_pipe.to(device=device, dtype=torch.bfloat16)
generator = torch.Generator(device=device).manual_seed(10)

# lrm
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)

model = model.to(device)
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()

# Flux multi-view generation
def multi_view_rgb_normal_generation(prompt, save_path=None):
    # generate multi-view images
    with torch.no_grad():
        image = flux_pipe(
            prompt=prompt,
            num_inference_steps=30,
            guidance_scale=3.5,
            num_images_per_prompt=1,
            width=resolution*4,
            height=resolution*2,
            output_type='np',
            generator=generator
        ).images
    return image

# lrm reconstructions
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False):
    images = image.unsqueeze(0).to(device)
    images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
    # breakpoint()
    with torch.no_grad():
        # get triplane
        planes = model.forward_planes(images, input_cameras)
        
        mesh_path_idx = os.path.join(save_path, f'{name}.obj')

        mesh_out = model.extract_mesh(
            planes,
            use_texture_map=export_texmap,
            **infer_config,
        )
        if export_texmap:
            vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
            save_obj_with_mtl(
                vertices.data.cpu().numpy(),
                uvs.data.cpu().numpy(),
                faces.data.cpu().numpy(),
                mesh_tex_idx.data.cpu().numpy(),
                tex_map.permute(1, 2, 0).data.cpu().numpy(),
                mesh_path_idx,
            )
        else:
            vertices, faces, vertex_colors = mesh_out
            save_obj(vertices, faces, vertex_colors, mesh_path_idx)
        print(f"Mesh saved to {mesh_path_idx}")

        render_size = 512
        if if_save_video:
            video_path_idx = os.path.join(save_path, f'{name}.mp4')
            render_size = infer_config.render_resolution
            ENV = load_mipmap("models/lrm/env_mipmap/6")
            materials = (0.0,0.9)
            
            all_mv, all_mvp, all_campos = get_render_cameras_video(
                batch_size=1, 
                M=240, 
                radius=4.5, 
                elevation=(90, 60.0),
                is_flexicubes=True,
                fov=30
            )
            
            frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
                model, 
                planes, 
                render_cameras=all_mvp,
                camera_pos=all_campos,
                env=ENV,
                materials=materials,
                render_size=render_size, 
                chunk_size=20, 
                is_flexicubes=True,
            )
            normals = (torch.nn.functional.normalize(normals) + 1) / 2
            normals = normals * alphas + (1-alphas)
            all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
                
            save_video(
                all_frames,
                video_path_idx,
                fps=30,
            )
            print(f"Video saved to {video_path_idx}")

    return vertices, faces


def local_normal_global_transform(local_normal_images, azimuths_deg, elevations_deg):
    if local_normal_images.min() >= 0:
        local_normal = local_normal_images.float() * 2 - 1
    else:
        local_normal = local_normal_images.float()
    global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
    global_normal[...,0] *= -1
    global_normal = (global_normal + 1) / 2
    global_normal = global_normal.permute(0, 3, 1, 2)
    return global_normal

def main():
    end = time.time()
    fix_prompt = 'a grid of 2x4 multi-view image. elevation 5. white background.'
    # user prompt
    prompt = "a owl wearing a hat."
    save_dir_path = os.path.join(save_dir, prompt.split(".")[0].replace(" ", "_"))
    os.makedirs(save_dir_path, exist_ok=True)
    prompt = fix_prompt+" "+prompt
    # generate multi-view images
    rgb_normal_grid = multi_view_rgb_normal_generation(prompt)
    # lrm reconstructions
    images = torch.from_numpy(rgb_normal_grid).squeeze(0).permute(2, 0, 1).contiguous().float()     # (3, 1024, 2048)
    images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=2, m=4)        # (8, 3, 512, 512)
    rgb_multi_view = images[:4, :3, :, :]
    normal_multi_view = images[4:, :3, :, :]
    multi_view_mask = get_background(normal_multi_view)
    rgb_multi_view = rgb_multi_view * rgb_multi_view + (1-multi_view_mask)
    input_cameras = get_flux_input_cameras(batch_size=1, radius=4.2, fov=30).to(device)
    vertices, faces = lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm', export_texmap=False, if_save_video=False)
    # local normal to global normal

    global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1), isomer_azimuths, isomer_elevations)
    global_normal = global_normal * multi_view_mask + (1-multi_view_mask)

    global_normal = global_normal.permute(0,2,3,1)
    rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
    multi_view_mask = multi_view_mask.permute(0,2,3,1).squeeze(-1)
    vertices = torch.from_numpy(vertices).to(device)
    faces = torch.from_numpy(faces).to(device)
    vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
    vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]

    # global_normal: B,H,W,3
    # multi_view_mask: B,H,W
    # rgb_multi_view: B,H,W,3
    
    meshes = reconstruction(
        normal_pils=global_normal, 
        masks=multi_view_mask, 
        weights=isomer_geo_weights, 
        fov=30, 
        radius=isomer_radius, 
        camera_angles_azi=isomer_azimuths, 
        camera_angles_ele=isomer_elevations, 
        expansion_weight_stage1=0.1,
        init_type="file",
        init_verts=vertices,
        init_faces=faces,
        stage1_steps=0,
        stage2_steps=50,
        start_edge_len_stage1=0.1,
        end_edge_len_stage1=0.02,
        start_edge_len_stage2=0.02,
        end_edge_len_stage2=0.005,
    )


    save_glb_addr = projection(
        meshes,
        masks=multi_view_mask,
        images=rgb_multi_view,
        azimuths=isomer_azimuths, 
        elevations=isomer_elevations, 
        weights=isomer_color_weights,
        fov=30,
        radius=isomer_radius,
        save_dir=f"{save_dir_path}/ISOMER/",
    )
    print(f'saved to {save_glb_addr}')
    print(f"Time elapsed: {time.time() - end:.2f}s")



if __name__ == '__main__':
    main()