File size: 20,591 Bytes
98bebfc
02a9751
98bebfc
bfcd6c7
02a9751
e9ede6f
90fcb96
b9ac0b7
 
f629917
b9ac0b7
 
c9c26bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a9751
3a8b023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ab94ef
02a9751
ca3ac96
 
 
 
 
 
 
02a9751
 
 
 
 
 
 
ca3ac96
 
3544dc1
819ce30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02a9751
98bebfc
02a9751
98bebfc
02a9751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bebfc
 
02a9751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bebfc
02a9751
98bebfc
02a9751
 
98bebfc
02a9751
 
 
 
 
 
 
 
 
 
98bebfc
02a9751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bebfc
621b8ec
02a9751
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98bebfc
02a9751
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import torch
subprocess.run(
    shlex.split(
        "pip install -e ./diffusers --force-reinstall --no-deps"
    )
)
subprocess.run(
    shlex.split(
        "pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
    )
)

subprocess.run(
    shlex.split(
        "pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
    )
)

subprocess.run(
    shlex.split(
        "pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
    )
)
# download cudatoolkit
def install_cuda_toolkit():
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
    # CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
    subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
    subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])

    os.environ["CUDA_HOME"] = "/usr/local/cuda"
    os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
    os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
        os.environ["CUDA_HOME"],
        "" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
    )
    # Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
    os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
    print("==> finfish install")
install_cuda_toolkit()

@spaces.GPU
def check_gpu():
    os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
    os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
    # os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
    os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
    subprocess.run(['nvidia-smi'])  # 测试 CUDA 是否可用
    # 显式加载 libnvrtc.so.12
    cuda_lib_path = "/usr/local/cuda-12.1/lib64/libnvrtc.so.12"
    try:
        ctypes.CDLL(cuda_lib_path, mode=ctypes.RTLD_GLOBAL)
        print(f"Successfully preloaded {cuda_lib_path}")
    except OSError as e:
        print(f"Failed to preload {cuda_lib_path}: {e}")
    print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
check_gpu()

import base64
import re
import sys

from models.ISOMER.scripts.utils import fix_vert_color_glb

sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
    os.environ['OMP_NUM_THREADS'] = '32'

import shutil
import json
import requests
import shutil
import threading
from PIL import Image
import time
torch.backends.cuda.matmul.allow_tf32 = True
import trimesh

import random
import time
import numpy as np
from video_render import render_video_from_obj

access_token = os.getenv("HUGGINGFACE_TOKEN")
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main

is_running = False

TEXT_URL = "http://127.0.0.1:9239/prompt"
IMG_URL = ""


KISS_3D_TEXT_FOLDER = "./outputs/text2"
KISS_3D_IMG_FOLDER = "./outputs/image2"

# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png"  # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/abs/example"
GITHUB_LINK = "https://github.com/example"

k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')


TEMP_MESH_ADDRESS=''

mesh_cache = None
preprocessed_input_image = None

def save_cached_mesh():
    global mesh_cache
    return mesh_cache
    # if mesh_cache is None:
    #     return None
    # return save_py3dmesh_with_trimesh_fast(mesh_cache)

def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
    from pytorch3d.structures import Meshes
    import trimesh

    # convert from pytorch3d meshes to trimesh mesh
    vertices = meshes.verts_packed().cpu().float().numpy()
    triangles = meshes.faces_packed().cpu().long().numpy()
    np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
    if save_glb_path.endswith(".glb"):
        # rotate 180 along +Y
        vertices[:, [0, 2]] = -vertices[:, [0, 2]]

    def srgb_to_linear(c_srgb):
        c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
        return c_linear.clip(0, 1.)
    if apply_sRGB_to_LinearRGB:
        np_color = srgb_to_linear(np_color)
    assert vertices.shape[0] == np_color.shape[0]
    assert np_color.shape[1] == 3
    assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
    mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
    mesh.remove_unreferenced_vertices()
    # save mesh
    mesh.export(save_glb_path)
    if save_glb_path.endswith(".glb"):
        fix_vert_color_glb(save_glb_path)
    print(f"saving to {save_glb_path}")
# 
# 

@spaces.GPU
def text_to_detailed(prompt, seed=None):
    print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
    return k3d_wrapper.get_detailed_prompt(prompt, seed)

@spaces.GPU
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=30, redux_hparam=None, init_image=None, **kwargs):
    print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
    k3d_wrapper.renew_uuid()
    init_image = None
    if init_image_path is not None:
        init_image = Image.open(init_image_path)
    result = k3d_wrapper.generate_3d_bundle_image_text( 
                                      prompt,
                                      image=init_image, 
                                      strength=strength,
                                      lora_scale=lora_scale,
                                      num_inference_steps=num_inference_steps,
                                      seed=int(seed) if seed is not None else None,
                                      redux_hparam=redux_hparam,
                                      save_intermediate_results=True,
                                      **kwargs)
    return result[-1]

def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
    global preprocessed_input_image

    seed = int(seed) if seed is not None else None

    # TODO: delete this later
    k3d_wrapper.del_llm_model()
    
    input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)

    preprocessed_input_image = Image.open(input_image_save_path)
    return reference_save_path, caption

@spaces.GPU
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
    global mesh_cache 
    seed = int(seed) if seed is not None else None


    # TODO: delete this later
    k3d_wrapper.del_llm_model()

    input_image = preprocessed_input_image

    reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255

    gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
    mesh_cache = recon_mesh_path


    # gen_save_ = Image.open(gen_save_path)

    if if_video:
        video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
        render_video_from_obj(recon_mesh_path, video_path)
        print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
        return gen_save_path, video_path
    else:
        return gen_save_path, recon_mesh_path
    # return gen_save_path, recon_mesh_path

@spaces.GPU
def bundle_image_to_mesh(
        gen_3d_bundle_image, 
        lrm_radius = 4.15,
        isomer_radius = 4.5,
        reconstruction_stage1_steps = 10,
        reconstruction_stage2_steps = 50,
         save_intermediate_results=True, 
        if_video=True
    ):
    global mesh_cache
    print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")

    # TODO: delete this later
    k3d_wrapper.del_llm_model()

    print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")

    gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
    # recon from 3D Bundle image
    recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
    mesh_cache = recon_mesh_path
    
    if if_video:
        video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
        # # 检查这个video_path文件大小是是否超过50KB,不超过的话就认为是空文件,需要重新渲染
        # if os.path.exists(video_path):
        #     print(f"file size:{os.path.getsize(video_path)}")
        #     if os.path.getsize(video_path) > 50*1024:
        #         print(f"video path:{video_path}")
        #         return video_path
        render_video_from_obj(recon_mesh_path, video_path)
        print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
        return video_path
    else:
        return recon_mesh_path

_HEADER_=f"""
<img src="{LOGO_PATH}">
    <h2><b>Official 🤗 Gradio Demo</b></h2><h2>
    <b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></a></h2>

<p>**Kiss3DGen** is xxxxxxxxx</p>

[![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK})  [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
"""

_CITE_ = r"""
<h2>If Kiss3DGen is helpful, please help to ⭐ the <a href='{""" + GITHUB_LINK + r"""}' target='_blank'>Github Repo</a>. Thanks!</h2>

📝 **Citation**

If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxxx,
  title={xxxx},
  author={xxxx},
  journal={xxxx},
  year={xxxx}
}
```

📋 **License**

Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.

📧 **Contact**

If you have any questions, feel free to open a discussion or contact us at <b>xxx@xxxx</b>.
"""

def image_to_base64(image_path):
    """Converts an image file to a base64-encoded string."""
    with open(image_path, "rb") as img_file:
        return base64.b64encode(img_file.read()).decode('utf-8')

def main():

    torch.set_grad_enabled(False)

    # Convert the logo image to base64
    logo_base64 = image_to_base64(LOGO_PATH)
    # with gr.Blocks() as demo:
    with gr.Blocks(css="""
        body {
            display: flex;
            justify-content: center;
            align-items: center;
            min-height: 100vh;
            margin: 0;
            padding: 0;
        }
        #col-container { margin: 0px auto; max-width: 200px; } 


        .gradio-container {
            max-width: 1000px;
            margin: auto;
            width: 100%;
        }
        #center-align-column {
            display: flex;
            justify-content: center;
            align-items: center;
        }
        #right-align-column {
            display: flex;
            justify-content: flex-end;
            align-items: center;
        }
        h1 {text-align: center;}
        h2 {text-align: center;}
        h3 {text-align: center;}
        p {text-align: center;}
        img {text-align: right;}
        .right {
        display: block;
        margin-left: auto;
        }
        .center {
        display: block;
        margin-left: auto;
        margin-right: auto;
        width: 50%;

        #content-container {
            max-width: 1200px;
            margin: 0 auto;
        }
        #example-container {
            max-width: 300px;
            margin: 0 auto;
        }
    """,elem_id="col-container") as demo:
        # Header Section
        # gr.Image(value=LOGO_PATH, width=64, height=64)
        # gr.Markdown(_HEADER_)
        with gr.Row(elem_id="content-container"):
            # with gr.Column(scale=1):
            #     pass
            # with gr.Column(scale=1, elem_id="right-align-column"):
            #     # gr.Image(value=LOGO_PATH, interactive=False, show_label=False, width=64, height=64, elem_id="logo-image")
            #     # gr.Markdown(f"<img src='{LOGO_PATH}' alt='Logo' style='width:64px;height:64px;border:0;'>")
            #     # gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='right' style='width:64px;height:64px;border:0;text-align:right;'>")
            #     pass
            with gr.Column(scale=7, elem_id="center-align-column"):
                gr.Markdown(f"""
                ## Official 🤗 Gradio Demo
                # Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation""")
                gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='center' style='width:64px;height:64px;border:0;text-align:center;'>")

                gr.HTML(f"""
                <div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
                    <a href="{ARXIV_LINK}" target="_blank">
                        <img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
                    </a>
                    <a href="{GITHUB_LINK}" target="_blank">
                        <img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
                    </a>
                </div>
                
                """)


                # gr.HTML(f"""
                # <div style="display: flex; gap: 10px; align-items: center;"><a href="{ARXIV_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv"></a>  <a href="{GITHUB_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub"></a></div>
                # """)

                # gr.Markdown(f"""
                # [![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK})  [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
                # """, elem_id="title")
            # with gr.Column(scale=1):
            #     pass
                # with gr.Row():
                #     gr.Markdown(f"[![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK})")
                #     gr.Markdown(f"[![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})")

        # Tabs Section
        with gr.Tabs(selected='tab_text_to_3d', elem_id="content-container") as main_tabs:
            with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
                with gr.Row():
                    with gr.Column(scale=1):
                        prompt = gr.Textbox(value="", label="Input Prompt", lines=4)
                        seed1 = gr.Number(value=10, label="Seed")

                        with gr.Row(elem_id="example-container"):
                            gr.Examples(
                                examples=[
                                    # ["A tree with red leaves"],
                                    # ["A dragon with black texture"],
                                    ["A girl with pink hair"],
                                    ["A boy playing guitar"],


                                    ["A dog wearing a hat"],
                                    ["A boy playing basketball"],
                                    # [""],
                                    # [""],
                                    # [""],

                                ],
                                inputs=[prompt],  # 将选中的示例填入 prompt 文本框
                                label="Example Prompts"
                            )
                        btn_text2detailed = gr.Button("Refine to detailed prompt")
                        detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=4, interactive=True)
                        btn_text2img = gr.Button("Generate Images")

                    with gr.Column(scale=1):
                        output_image1 = gr.Image(label="Generated image", interactive=False)


                        # lrm_radius = gr.Number(value=4.15, label="lrm_radius")
                        # isomer_radius = gr.Number(value=4.5, label="isomer_radius")
                        # reconstruction_stage1_steps = gr.Number(value=10, label="reconstruction_stage1_steps")
                        # reconstruction_stage2_steps = gr.Number(value=50, label="reconstruction_stage2_steps")

                        btn_gen_mesh = gr.Button("Generate Mesh")
                        output_video1 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
                        btn_download1 = gr.Button("Download Mesh")

                        file_output1 = gr.File()
                        
            with gr.TabItem('Image-to-3D', id='tab_image_to_3d'):
                with gr.Row():
                    with gr.Column(scale=1):
                        image = gr.Image(label="Input Image", type="pil")
                        
                        seed2 = gr.Number(value=10, label="Seed (0 for random)")

                        btn_img2mesh_preprocess = gr.Button("Preprocess Image")

                        image_caption = gr.Textbox(value="", label="Image Caption", placeholder="caption will be generated here base on your input image. You can also edit this caption", lines=4, interactive=True)
                        
                        output_image2 = gr.Image(label="Generated image", interactive=False)
                        strength1 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.5, label="strength1")
                        strength2 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.95, label="strength2")
                        enable_redux = gr.Checkbox(label="enable redux", value=True)
                        use_controlnet = gr.Checkbox(label="use controlnet", value=True)

                        btn_img2mesh_main = gr.Button("Generate Mesh")

                    with gr.Column(scale=1):

                        # output_mesh2 = gr.Model3D(label="Generated Mesh", interactive=False)
                        output_image3 = gr.Image(label="gen save image", interactive=False)
                        output_video2 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
                        btn_download2 = gr.Button("Download Mesh")
                        file_output2 = gr.File()

        # Image2
        btn_img2mesh_preprocess.click(fn=image2mesh_preprocess_, inputs=[image, seed2], outputs=[output_image2, image_caption])

        btn_img2mesh_main.click(fn=image2mesh_main_, inputs=[output_image2, image_caption, seed2, strength1, strength2, enable_redux, use_controlnet], outputs=[output_image3, output_video2])


        btn_download2.click(fn=save_cached_mesh, inputs=[], outputs=file_output2)


        # Button Click Events
        # Text2
        btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
        btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, seed1], outputs=output_image1)
        btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1,], outputs=output_video1)
        # btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, lrm_radius, isomer_radius, reconstruction_stage1_steps, reconstruction_stage2_steps], outputs=output_video1)

        with gr.Row():
            pass
        with gr.Row():
            gr.Markdown(_CITE_)

    # demo.queue(default_concurrency_limit=1)
    # demo.launch(server_name="0.0.0.0", server_port=9239)
    demo.launch()


if __name__ == "__main__":
    main()