File size: 20,591 Bytes
98bebfc 02a9751 98bebfc bfcd6c7 02a9751 e9ede6f 90fcb96 b9ac0b7 f629917 b9ac0b7 c9c26bc 02a9751 3a8b023 0ab94ef 02a9751 ca3ac96 02a9751 ca3ac96 3544dc1 819ce30 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 02a9751 98bebfc 621b8ec 02a9751 98bebfc 02a9751 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import torch
subprocess.run(
shlex.split(
"pip install -e ./diffusers --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# download cudatoolkit
def install_cuda_toolkit():
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run"
# CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda_12.2.0_535.54.03_linux.run"
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finfish install")
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
# os.environ['LD_LIBRARY_PATH'] += ':/usr/local/cuda-12.1/lib64'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # 测试 CUDA 是否可用
# 显式加载 libnvrtc.so.12
cuda_lib_path = "/usr/local/cuda-12.1/lib64/libnvrtc.so.12"
try:
ctypes.CDLL(cuda_lib_path, mode=ctypes.RTLD_GLOBAL)
print(f"Successfully preloaded {cuda_lib_path}")
except OSError as e:
print(f"Failed to preload {cuda_lib_path}: {e}")
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
check_gpu()
import base64
import re
import sys
from models.ISOMER.scripts.utils import fix_vert_color_glb
sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '32'
import shutil
import json
import requests
import shutil
import threading
from PIL import Image
import time
torch.backends.cuda.matmul.allow_tf32 = True
import trimesh
import random
import time
import numpy as np
from video_render import render_video_from_obj
access_token = os.getenv("HUGGINGFACE_TOKEN")
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main
is_running = False
TEXT_URL = "http://127.0.0.1:9239/prompt"
IMG_URL = ""
KISS_3D_TEXT_FOLDER = "./outputs/text2"
KISS_3D_IMG_FOLDER = "./outputs/image2"
# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/abs/example"
GITHUB_LINK = "https://github.com/example"
k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
TEMP_MESH_ADDRESS=''
mesh_cache = None
preprocessed_input_image = None
def save_cached_mesh():
global mesh_cache
return mesh_cache
# if mesh_cache is None:
# return None
# return save_py3dmesh_with_trimesh_fast(mesh_cache)
def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
from pytorch3d.structures import Meshes
import trimesh
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
#
#
@spaces.GPU
def text_to_detailed(prompt, seed=None):
print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
return k3d_wrapper.get_detailed_prompt(prompt, seed)
@spaces.GPU
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=30, redux_hparam=None, init_image=None, **kwargs):
print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
k3d_wrapper.renew_uuid()
init_image = None
if init_image_path is not None:
init_image = Image.open(init_image_path)
result = k3d_wrapper.generate_3d_bundle_image_text(
prompt,
image=init_image,
strength=strength,
lora_scale=lora_scale,
num_inference_steps=num_inference_steps,
seed=int(seed) if seed is not None else None,
redux_hparam=redux_hparam,
save_intermediate_results=True,
**kwargs)
return result[-1]
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
global preprocessed_input_image
seed = int(seed) if seed is not None else None
# TODO: delete this later
k3d_wrapper.del_llm_model()
input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)
preprocessed_input_image = Image.open(input_image_save_path)
return reference_save_path, caption
@spaces.GPU
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
global mesh_cache
seed = int(seed) if seed is not None else None
# TODO: delete this later
k3d_wrapper.del_llm_model()
input_image = preprocessed_input_image
reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255
gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
mesh_cache = recon_mesh_path
# gen_save_ = Image.open(gen_save_path)
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return gen_save_path, video_path
else:
return gen_save_path, recon_mesh_path
# return gen_save_path, recon_mesh_path
@spaces.GPU
def bundle_image_to_mesh(
gen_3d_bundle_image,
lrm_radius = 4.15,
isomer_radius = 4.5,
reconstruction_stage1_steps = 10,
reconstruction_stage2_steps = 50,
save_intermediate_results=True,
if_video=True
):
global mesh_cache
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
# TODO: delete this later
k3d_wrapper.del_llm_model()
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
# recon from 3D Bundle image
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
mesh_cache = recon_mesh_path
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
# # 检查这个video_path文件大小是是否超过50KB,不超过的话就认为是空文件,需要重新渲染
# if os.path.exists(video_path):
# print(f"file size:{os.path.getsize(video_path)}")
# if os.path.getsize(video_path) > 50*1024:
# print(f"video path:{video_path}")
# return video_path
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return video_path
else:
return recon_mesh_path
_HEADER_=f"""
<img src="{LOGO_PATH}">
<h2><b>Official 🤗 Gradio Demo</b></h2><h2>
<b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></a></h2>
<p>**Kiss3DGen** is xxxxxxxxx</p>
[]({ARXIV_LINK}) []({GITHUB_LINK})
"""
_CITE_ = r"""
<h2>If Kiss3DGen is helpful, please help to ⭐ the <a href='{""" + GITHUB_LINK + r"""}' target='_blank'>Github Repo</a>. Thanks!</h2>
📝 **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxxx,
title={xxxx},
author={xxxx},
journal={xxxx},
year={xxxx}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>xxx@xxxx</b>.
"""
def image_to_base64(image_path):
"""Converts an image file to a base64-encoded string."""
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
def main():
torch.set_grad_enabled(False)
# Convert the logo image to base64
logo_base64 = image_to_base64(LOGO_PATH)
# with gr.Blocks() as demo:
with gr.Blocks(css="""
body {
display: flex;
justify-content: center;
align-items: center;
min-height: 100vh;
margin: 0;
padding: 0;
}
#col-container { margin: 0px auto; max-width: 200px; }
.gradio-container {
max-width: 1000px;
margin: auto;
width: 100%;
}
#center-align-column {
display: flex;
justify-content: center;
align-items: center;
}
#right-align-column {
display: flex;
justify-content: flex-end;
align-items: center;
}
h1 {text-align: center;}
h2 {text-align: center;}
h3 {text-align: center;}
p {text-align: center;}
img {text-align: right;}
.right {
display: block;
margin-left: auto;
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
#content-container {
max-width: 1200px;
margin: 0 auto;
}
#example-container {
max-width: 300px;
margin: 0 auto;
}
""",elem_id="col-container") as demo:
# Header Section
# gr.Image(value=LOGO_PATH, width=64, height=64)
# gr.Markdown(_HEADER_)
with gr.Row(elem_id="content-container"):
# with gr.Column(scale=1):
# pass
# with gr.Column(scale=1, elem_id="right-align-column"):
# # gr.Image(value=LOGO_PATH, interactive=False, show_label=False, width=64, height=64, elem_id="logo-image")
# # gr.Markdown(f"<img src='{LOGO_PATH}' alt='Logo' style='width:64px;height:64px;border:0;'>")
# # gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='right' style='width:64px;height:64px;border:0;text-align:right;'>")
# pass
with gr.Column(scale=7, elem_id="center-align-column"):
gr.Markdown(f"""
## Official 🤗 Gradio Demo
# Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation""")
gr.HTML(f"<img src='data:image/png;base64,{logo_base64}' alt='Logo' class='center' style='width:64px;height:64px;border:0;text-align:center;'>")
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
<a href="{ARXIV_LINK}" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
</a>
<a href="{GITHUB_LINK}" target="_blank">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
</a>
</div>
""")
# gr.HTML(f"""
# <div style="display: flex; gap: 10px; align-items: center;"><a href="{ARXIV_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv"></a> <a href="{GITHUB_LINK}" target="_blank" rel="noopener noreferrer"><img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub"></a></div>
# """)
# gr.Markdown(f"""
# []({ARXIV_LINK}) []({GITHUB_LINK})
# """, elem_id="title")
# with gr.Column(scale=1):
# pass
# with gr.Row():
# gr.Markdown(f"[]({ARXIV_LINK})")
# gr.Markdown(f"[]({GITHUB_LINK})")
# Tabs Section
with gr.Tabs(selected='tab_text_to_3d', elem_id="content-container") as main_tabs:
with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(value="", label="Input Prompt", lines=4)
seed1 = gr.Number(value=10, label="Seed")
with gr.Row(elem_id="example-container"):
gr.Examples(
examples=[
# ["A tree with red leaves"],
# ["A dragon with black texture"],
["A girl with pink hair"],
["A boy playing guitar"],
["A dog wearing a hat"],
["A boy playing basketball"],
# [""],
# [""],
# [""],
],
inputs=[prompt], # 将选中的示例填入 prompt 文本框
label="Example Prompts"
)
btn_text2detailed = gr.Button("Refine to detailed prompt")
detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=4, interactive=True)
btn_text2img = gr.Button("Generate Images")
with gr.Column(scale=1):
output_image1 = gr.Image(label="Generated image", interactive=False)
# lrm_radius = gr.Number(value=4.15, label="lrm_radius")
# isomer_radius = gr.Number(value=4.5, label="isomer_radius")
# reconstruction_stage1_steps = gr.Number(value=10, label="reconstruction_stage1_steps")
# reconstruction_stage2_steps = gr.Number(value=50, label="reconstruction_stage2_steps")
btn_gen_mesh = gr.Button("Generate Mesh")
output_video1 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
btn_download1 = gr.Button("Download Mesh")
file_output1 = gr.File()
with gr.TabItem('Image-to-3D', id='tab_image_to_3d'):
with gr.Row():
with gr.Column(scale=1):
image = gr.Image(label="Input Image", type="pil")
seed2 = gr.Number(value=10, label="Seed (0 for random)")
btn_img2mesh_preprocess = gr.Button("Preprocess Image")
image_caption = gr.Textbox(value="", label="Image Caption", placeholder="caption will be generated here base on your input image. You can also edit this caption", lines=4, interactive=True)
output_image2 = gr.Image(label="Generated image", interactive=False)
strength1 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.5, label="strength1")
strength2 = gr.Slider(minimum=0, maximum=1.0, step=0.01, value=0.95, label="strength2")
enable_redux = gr.Checkbox(label="enable redux", value=True)
use_controlnet = gr.Checkbox(label="use controlnet", value=True)
btn_img2mesh_main = gr.Button("Generate Mesh")
with gr.Column(scale=1):
# output_mesh2 = gr.Model3D(label="Generated Mesh", interactive=False)
output_image3 = gr.Image(label="gen save image", interactive=False)
output_video2 = gr.Video(label="Generated Video", interactive=False, loop=True, autoplay=True)
btn_download2 = gr.Button("Download Mesh")
file_output2 = gr.File()
# Image2
btn_img2mesh_preprocess.click(fn=image2mesh_preprocess_, inputs=[image, seed2], outputs=[output_image2, image_caption])
btn_img2mesh_main.click(fn=image2mesh_main_, inputs=[output_image2, image_caption, seed2, strength1, strength2, enable_redux, use_controlnet], outputs=[output_image3, output_video2])
btn_download2.click(fn=save_cached_mesh, inputs=[], outputs=file_output2)
# Button Click Events
# Text2
btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, seed1], outputs=output_image1)
btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1,], outputs=output_video1)
# btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, lrm_radius, isomer_radius, reconstruction_stage1_steps, reconstruction_stage2_steps], outputs=output_video1)
with gr.Row():
pass
with gr.Row():
gr.Markdown(_CITE_)
# demo.queue(default_concurrency_limit=1)
# demo.launch(server_name="0.0.0.0", server_port=9239)
demo.launch()
if __name__ == "__main__":
main()
|