File size: 18,631 Bytes
98bebfc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
import os
from einops import rearrange
from omegaconf import OmegaConf
import torch
import numpy as np
import trimesh
import torchvision
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from torchvision.transforms import v2
from transformers import AutoProcessor, AutoModelForCausalLM
import rembg
from diffusers import FluxPipeline, FluxControlNetImg2ImgPipeline
from diffusers.models.controlnet_flux import FluxControlNetModel, FluxMultiControlNetModel
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler, HeunDiscreteScheduler
from pytorch_lightning import seed_everything
import os
from models.ISOMER.reconstruction_func import reconstruction
from models.ISOMER.projection_func import projection
from models.lrm.utils.infer_util import remove_background, resize_foreground, save_video
from models.lrm.utils.mesh_util import save_obj, save_obj_with_mtl
from models.lrm.utils.render_utils import rotate_x, rotate_y
from models.lrm.utils.train_util import instantiate_from_config
from models.lrm.utils.camera_util import get_zero123plus_input_cameras, get_custom_zero123plus_input_cameras, get_flux_input_cameras
from utils.tool import NormalTransfer, get_render_cameras_frames, load_mipmap
from utils.tool import get_background, get_render_cameras_video, render_frames
import time
device = "cuda"
resolution = 512
save_dir = "./outputs"
zero123plus_diffusion_steps = 75
normal_transfer = NormalTransfer()
rembg_session = rembg.new_session()
isomer_azimuths = torch.from_numpy(np.array([270, 0, 90, 180])).to(device)
isomer_elevations = torch.from_numpy(np.array([5, 5, 5, 5])).to(device)
isomer_radius = 4.1
isomer_geo_weights = torch.from_numpy(np.array([1, 0.9, 1, 0.9])).float().to(device)
isomer_color_weights = torch.from_numpy(np.array([1, 0.5, 1, 0.5])).float().to(device)
# seed_everything(42)
# model initialization and loading
# flux
print('==> Loading Flux model ...')
flux_base_model_pth = "/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/models--black-forest-labs--FLUX.1-dev"
flux_controlnet = FluxControlNetModel.from_pretrained("/hpc2hdd/JH_DATA/share/yingcongchen/PrivateShareGroup/yingcongchen_datasets/model_checkpoint/flux_controlnets/FLUX.1-dev-ControlNet-Union-Pro")
flux_pipe = FluxControlNetImg2ImgPipeline.from_pretrained(flux_base_model_pth, controlnet=[flux_controlnet], torch_dtype=torch.bfloat16).to(device=device, dtype=torch.bfloat16)
flux_pipe.load_lora_weights('./checkpoint/flux_lora/rgb_normal_large.safetensors')
flux_pipe.to(device=device, dtype=torch.bfloat16)
generator = torch.Generator(device=device).manual_seed(0)
# lrm
print('==> Loading LRM model ...')
config = OmegaConf.load("./models/lrm/config/PRM_inference.yaml")
model_config = config.model_config
infer_config = config.infer_config
model = instantiate_from_config(model_config)
model_ckpt_path = "./checkpoint/lrm/final_ckpt.ckpt"
state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.')}
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.init_flexicubes_geometry(device, fovy=50.0)
model = model.eval()
# zero123++
print('==> Loading diffusion model ...')
zero123plus_pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="./models/zero123plus",
torch_dtype=torch.float16,
)
zero123plus_pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
zero123plus_pipeline.scheduler.config, timestep_spacing='trailing'
)
unet_ckpt_path = "./checkpoint/zero123++/flexgen_19w.ckpt"
state_dict = torch.load(unet_ckpt_path, map_location='cpu')['state_dict']
state_dict = {k[10:]: v for k, v in state_dict.items() if k.startswith('unet.unet.')}
zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
zero123plus_pipeline = zero123plus_pipeline.to(device)
# unet_ckpt_path = "checkpoint/zero123++/diffusion_pytorch_model.bin"
# state_dict = torch.load(unet_ckpt_path, map_location='cpu')
# zero123plus_pipeline.unet.load_state_dict(state_dict, strict=True)
# zero123plus_pipeline = zero123plus_pipeline.to(device)
# florence
caption_model = AutoModelForCausalLM.from_pretrained(
"/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", torch_dtype=torch.bfloat16, trust_remote_code=True,
).to(device)
caption_processor = AutoProcessor.from_pretrained("/hpc2hdd/home/jlin695/.cache/huggingface/hub/models--multimodalart--Florence-2-large-no-flash-attn/snapshots/8db3793cf5b453b2ccfb3a4f613b403b2e6b7ca2", trust_remote_code=True)
# Flux multi-view generation
def multi_view_rgb_normal_generation_with_controlnet(prompt, image, strength=1.0,
control_image=[],
control_mode=[],
control_guidance_start=None,
control_guidance_end=None,
controlnet_conditioning_scale=None,
lora_scale=1.0
):
control_mode_dict = {
'canny': 0,
'tile': 1,
'depth': 2,
'blur': 3,
'pose': 4,
'gray': 5,
'lq': 6,
} # for https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union only
hparam_dict = {
'prompt': prompt,
'image': image,
'strength': strength,
'num_inference_steps': 30,
'guidance_scale': 3.5,
'num_images_per_prompt': 1,
'width': resolution*4,
'height': resolution*2,
'output_type': 'np',
'generator': generator,
'joint_attention_kwargs': {"scale": lora_scale}
}
# append controlnet hparams
if len(control_image) > 0:
assert len(control_mode) == len(control_image) # the count of image should be the same as control mode
ctrl_hparams = {
'control_mode': [control_mode_dict[mode_] for mode_ in control_mode],
'control_image': control_image,
'control_guidance_start': control_guidance_start or [0.0 for i in range(len(control_image))],
'control_guidance_end': control_guidance_end or [1.0 for i in range(len(control_image))],
'controlnet_conditioning_scale': controlnet_conditioning_scale or [1.0 for i in range(len(control_image))],
}
hparam_dict.update(ctrl_hparams)
# generate multi-view images
with torch.no_grad():
image = flux_pipe(
**hparam_dict
).images
return image
# captioning
def run_captioning(image):
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16
if isinstance(image, str): # If image is a file path
image = Image.open(image).convert("RGB")
prompt = "<MORE_DETAILED_CAPTION>"
inputs = caption_processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
# print(f"inputs {inputs}")
generated_ids = caption_model.generate(
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
)
generated_text = caption_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = caption_processor.post_process_generation(
generated_text, task=prompt, image_size=(image.width, image.height)
)
# print(f"parsed_answer = {parsed_answer}")
caption_text = parsed_answer["<MORE_DETAILED_CAPTION>"].replace("The image is ", "")
return caption_text
# zero123++ multi-view generation
def multi_view_rgb_generation(cond_img):
# generate multi-view images
with torch.no_grad():
output_image = zero123plus_pipeline(
cond_img,
num_inference_steps=zero123plus_diffusion_steps,
width=resolution*2,
height=resolution*2,
).images[0]
return output_image
# lrm reconstructions
def lrm_reconstructions(image, input_cameras, save_path=None, name="temp", export_texmap=False, if_save_video=False, render_azimuths=None, render_elevations=None, render_radius=None, render_fov=30):
images = image.unsqueeze(0).to(device)
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
# breakpoint()
with torch.no_grad():
# get triplane
planes = model.forward_planes(images, input_cameras)
mesh_path_idx = os.path.join(save_path, f'{name}.obj')
mesh_out = model.extract_mesh(
planes,
use_texture_map=export_texmap,
**infer_config,
)
if export_texmap:
vertices, faces, uvs, mesh_tex_idx, tex_map = mesh_out
save_obj_with_mtl(
vertices.data.cpu().numpy(),
uvs.data.cpu().numpy(),
faces.data.cpu().numpy(),
mesh_tex_idx.data.cpu().numpy(),
tex_map.permute(1, 2, 0).data.cpu().numpy(),
mesh_path_idx,
)
else:
vertices, faces, vertex_colors = mesh_out
save_obj(vertices, faces, vertex_colors, mesh_path_idx)
print(f"Mesh saved to {mesh_path_idx}")
render_size = 512
if if_save_video:
video_path_idx = os.path.join(save_path, f'{name}.mp4')
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos = get_render_cameras_video(
batch_size=1,
M=240,
radius=4.5,
elevation=(90, 60.0),
is_flexicubes=True,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
chunk_size=20,
is_flexicubes=True,
)
normals = (torch.nn.functional.normalize(normals) + 1) / 2
normals = normals * alphas + (1-alphas)
all_frames = torch.cat([frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals], dim=3)
# breakpoint()
save_video(
all_frames,
video_path_idx,
fps=30,
)
print(f"Video saved to {video_path_idx}")
if render_azimuths is not None and render_elevations is not None and render_radius is not None:
render_size = infer_config.render_resolution
ENV = load_mipmap("models/lrm/env_mipmap/6")
materials = (0.0,0.9)
all_mv, all_mvp, all_campos, identity_mv = get_render_cameras_frames(
batch_size=1,
radius=render_radius,
azimuths=render_azimuths,
elevations=render_elevations,
fov=30
)
frames, albedos, pbr_spec_lights, pbr_diffuse_lights, normals, alphas = render_frames(
model,
planes,
render_cameras=all_mvp,
camera_pos=all_campos,
env=ENV,
materials=materials,
render_size=render_size,
render_mv = all_mv,
local_normal=True,
identity_mv=identity_mv,
)
else:
normals = None
frames = None
albedos = None
return vertices, faces, normals, frames, albedos
def transform_normal(input_normal, azimuths_deg, elevations_deg, radius=4.5, is_global_to_local=False):
"""
input_normal: in range [-1, 1], shape (b c h w)
"""
input_normal = input_normal.permute(0, 2, 3, 1).cpu()
azimuths_deg = np.array(azimuths_deg)
elevations_deg = np.array(elevations_deg)
if is_global_to_local:
local_normal = normal_transfer.trans_global_2_local(input_normal, azimuths_deg, elevations_deg)
return local_normal.permute(0, 3, 1, 2)
else:
global_normal = normal_transfer.trans_local_2_global(input_normal, azimuths_deg, elevations_deg, radius=radius, for_lotus=False)
global_normal[..., 0] *= -1
return global_normal.permute(0, 3, 1, 2)
def local_normal_global_transform(local_normal_images,azimuths_deg,elevations_deg):
if local_normal_images.min() >= 0:
local_normal = local_normal_images.float() * 2 - 1
else:
local_normal = local_normal_images.float()
global_normal = normal_transfer.trans_local_2_global(local_normal, azimuths_deg, elevations_deg, radius=4.5, for_lotus=False)
global_normal[...,0] *= -1
global_normal = (global_normal + 1) / 2
global_normal = global_normal.permute(0, 3, 1, 2)
return global_normal
def main():
image_pth = "examples/蓝色小怪物.webp"
save_dir_path = os.path.join(save_dir, image_pth.split("/")[-1].split(".")[0])
os.makedirs(save_dir_path, exist_ok=True)
input_image = Image.open(image_pth)
# if not args.no_rembg:
input_image = remove_background(input_image, rembg_session)
input_image = resize_foreground(input_image, 0.85)
# generate caption
image_caption = run_captioning(image_pth)
# generate multi-view images
output_image = multi_view_rgb_generation(input_image)
# lrm reconstructions
rgb_multi_view = np.asarray(output_image, dtype=np.float32) / 255.0
rgb_multi_view = torch.from_numpy(rgb_multi_view).squeeze(0).permute(2, 0, 1).contiguous().float() # (3, 1024, 2048)
rgb_multi_view = rearrange(rgb_multi_view, 'c (n h) (m w) -> (n m) c h w', n=2, m=2) # (8, 3, 512, 512)
input_cameras = get_custom_zero123plus_input_cameras(batch_size=1, radius=3.5, fov=30).to(device)
vertices, faces, lrm_multi_view_normals, lrm_multi_view_rgb, lrm_multi_view_albedo = \
lrm_reconstructions(rgb_multi_view, input_cameras, save_path=save_dir_path, name='lrm',
export_texmap=False, if_save_video=False, render_azimuths=isomer_azimuths,
render_elevations=isomer_elevations, render_radius=isomer_radius, render_fov=30)
vertices = torch.from_numpy(vertices).to(device)
faces = torch.from_numpy(faces).to(device)
vertices = vertices @ rotate_x(np.pi / 2, device=vertices.device)[:3, :3]
vertices = vertices @ rotate_y(np.pi / 2, device=vertices.device)[:3, :3]
# lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([lrm_multi_view_rgb.cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
lrm_3D_bundle_image = torchvision.utils.make_grid(torch.cat([rgb_multi_view[[3,0,1,2]].cpu(), (lrm_multi_view_normals.cpu() + 1) / 2], dim=0), nrow=4, padding=0).unsqueeze(0) # range [0, 1]
# rgb_multi_view[[3,0,1,2]] : (B,3,H,W)
# lrm_multi_view_normals : (B,3,H,W)
# combined_images = 0.5 * rgb_multi_view[[3,0,1,2]].cpu() + 0.5 * (lrm_multi_view_normals.cpu() + 1) / 2
# torchvision.utils.save_image(combined_images, os.path.join("debug_output", 'combined.png'))
# breakpoint()
# Use the low-quality controlnet by default, feel free to try the others
control_image = [lrm_3D_bundle_image * 2 - 1]
control_mode = ['tile']
control_guidance_start = [0.0]
control_guidance_end = [0.3]
controlnet_conditioning_scale = [0.8]
flux_pipe.controlnet = FluxMultiControlNetModel([flux_controlnet for _ in control_mode])
# breakpoint()
rgb_normal_grid = multi_view_rgb_normal_generation_with_controlnet(
prompt= ' '.join(['A grid of 2x4 multi-view image, elevation 5. White background.', image_caption]),
image=lrm_3D_bundle_image,
strength=0.6,
control_image=control_image,
control_mode=control_mode,
control_guidance_start=control_guidance_start,
control_guidance_end=control_guidance_end,
controlnet_conditioning_scale=controlnet_conditioning_scale,
lora_scale=1.0
) # noted that rgb_normal_grid is a (b, h, w, c) numpy array
rgb_normal_grid = torch.from_numpy(rgb_normal_grid).contiguous().float()
rgb_normal_grid = rearrange(rgb_normal_grid.squeeze(0), '(n h) (m w) c-> (n m) c h w', n=2, m=4) # (8, 3, 512, 512)
rgb_multi_view = rgb_normal_grid[:4, :3, :, :].cuda()
normal_multi_view = rgb_normal_grid[4:, :3, :, :].cuda()
multi_view_mask = get_background(normal_multi_view).cuda()
rgb_multi_view = rgb_multi_view * multi_view_mask + (1-multi_view_mask)
# local normal to global normal
global_normal = local_normal_global_transform(normal_multi_view.permute(0, 2, 3, 1).cpu(), isomer_azimuths, isomer_elevations).cuda()
global_normal = global_normal * multi_view_mask + (1-multi_view_mask)
global_normal = global_normal.permute(0,2,3,1)
multi_view_mask = multi_view_mask.squeeze(1)
rgb_multi_view = rgb_multi_view.permute(0,2,3,1)
# global_normal: B,H,W,3
# multi_view_mask: B,H,W
# rgb_multi_view: B,H,W,3
meshes = reconstruction(
normal_pils=global_normal,
masks=multi_view_mask,
weights=isomer_geo_weights,
fov=30,
radius=isomer_radius,
camera_angles_azi=isomer_azimuths,
camera_angles_ele=isomer_elevations,
expansion_weight_stage1=0.1,
init_type="file",
init_verts=vertices,
init_faces=faces,
stage1_steps=0,
stage2_steps=50,
start_edge_len_stage1=0.1,
end_edge_len_stage1=0.02,
start_edge_len_stage2=0.02,
end_edge_len_stage2=0.005,
)
save_glb_addr = projection(
meshes=meshes,
masks=multi_view_mask,
images=rgb_multi_view,
azimuths=isomer_azimuths,
elevations=isomer_elevations,
weights=isomer_color_weights,
fov=30,
radius=isomer_radius,
save_dir=f"{save_dir_path}/ISOMER/",
)
print(f'saved to {save_glb_addr}')
if __name__ == '__main__':
main()
|