Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
# Load the model and processor
|
| 8 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 9 |
+
"daniel3303/QwenStoryteller",
|
| 10 |
+
torch_dtype="auto",
|
| 11 |
+
device_map="auto"
|
| 12 |
+
)
|
| 13 |
+
processor = AutoProcessor.from_pretrained("daniel3303/QwenStoryteller")
|
| 14 |
+
|
| 15 |
+
def generate_story(images):
|
| 16 |
+
image_content = []
|
| 17 |
+
for img in images[:6]:
|
| 18 |
+
image_content.append({
|
| 19 |
+
"type": "image",
|
| 20 |
+
"image": img,
|
| 21 |
+
})
|
| 22 |
+
|
| 23 |
+
# Add text prompt at the end
|
| 24 |
+
image_content.append({"type": "text", "text": "Generate a story based on these images."})
|
| 25 |
+
|
| 26 |
+
# Create messages with system prompt
|
| 27 |
+
messages = [
|
| 28 |
+
{
|
| 29 |
+
"role": "system",
|
| 30 |
+
"content": "You are an AI storyteller that can analyze sequences of images and create creative narratives. First think step-by-step to analyze characters, objects, settings, and narrative structure. Then create a grounded story that maintains consistent character identity and object references across frames. Use π§ tags to show your reasoning process before writing the final story."
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"role": "user",
|
| 34 |
+
"content": image_content,
|
| 35 |
+
}
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
# Preparation for inference
|
| 39 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 40 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 41 |
+
inputs = processor(
|
| 42 |
+
text=[text],
|
| 43 |
+
images=image_inputs,
|
| 44 |
+
videos=video_inputs,
|
| 45 |
+
padding=True,
|
| 46 |
+
return_tensors="pt"
|
| 47 |
+
)
|
| 48 |
+
inputs = inputs.to(model.device)
|
| 49 |
+
|
| 50 |
+
# Inference: Generate the output
|
| 51 |
+
generated_ids = model.generate(
|
| 52 |
+
**inputs,
|
| 53 |
+
max_new_tokens=4096,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
temperature=0.7,
|
| 56 |
+
top_p=0.9
|
| 57 |
+
)
|
| 58 |
+
generated_ids_trimmed = [
|
| 59 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 60 |
+
]
|
| 61 |
+
story = processor.batch_decode(
|
| 62 |
+
generated_ids_trimmed,
|
| 63 |
+
skip_special_tokens=True,
|
| 64 |
+
clean_up_tokenization_spaces=False
|
| 65 |
+
)[0]
|
| 66 |
+
|
| 67 |
+
return story
|
| 68 |
+
|
| 69 |
+
demo = gr.Interface(
|
| 70 |
+
fn=generate_story,
|
| 71 |
+
inputs=gr.Image(type="pil", label="Upload up to 6 images", image_mode="RGB", height=300, width=300, file_types=[".jpg", ".jpeg", ".png", ".webp"]),
|
| 72 |
+
outputs=gr.Textbox(label="Generated Story", lines=10),
|
| 73 |
+
title="Qwen Storyteller",
|
| 74 |
+
description="Upload up to 6 images to generate a creative story."
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
if __name__ == "__main__":
|
| 78 |
+
demo.launch()
|