File size: 33,297 Bytes
e7251ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import openai
from utils import *
from youtube_api_test import *
import traceback
import datetime
from prompt import *
import matplotlib.pyplot as plt
from io import BytesIO
from PIL import Image
import concurrent.futures

plt.rcParams['font.family'] = ['DejaVu Sans', 'Arial Unicode MS', 'SimHei', 'Malgun Gothic']
plt.rcParams['axes.unicode_minus'] = False

client = openai.OpenAI(api_key=api_key)

def create_sentiment_pie_chart(classified_comments):
    try:
        print("πŸ“Š Creating PREMIUM sentiment analysis dashboard...")
        
        plt.rcParams['font.size'] = 10
        
        sentiment_data = {'Positive': [], 'Negative': [], 'Neutral': []}
        confidence_breakdown = {'High': 0, 'Medium': 0, 'Low': 0}
        top_liked_by_sentiment = {'Positive': [], 'Negative': [], 'Neutral': []}
        
        for comment in classified_comments:
            analysis = comment['sentiment_analysis']
            likes = comment['likes']
            comment_text = comment['comment']
            
            sentiment = 'Neutral'
            if 'Positive' in analysis:
                sentiment = 'Positive'
            elif 'Negative' in analysis:
                sentiment = 'Negative'
            
            sentiment_data[sentiment].append({
                'comment': comment_text,
                'likes': likes,
                'analysis': analysis
            })
            
            # Extract confidence level
            if 'High' in analysis:
                confidence_breakdown['High'] += 1
            elif 'Medium' in analysis:
                confidence_breakdown['Medium'] += 1
            else:
                confidence_breakdown['Low'] += 1
            
            top_liked_by_sentiment = sentiment_data
        
        # Sort top liked comments
        for sentiment in top_liked_by_sentiment:
            top_liked_by_sentiment[sentiment] = sorted(
                top_liked_by_sentiment[sentiment], 
                key=lambda x: x['likes'], 
                reverse=True
            )[:3]  # Top 3 per sentiment
        
        # Calculate percentages and metrics
        total_comments = len(classified_comments)
        sentiment_counts = {k: len(v) for k, v in sentiment_data.items()}
        sentiment_percentages = {k: (v/total_comments*100) if total_comments > 0 else 0 
                               for k, v in sentiment_counts.items()}
        
        # Calculate engagement metrics
        avg_likes_by_sentiment = {}
        for sentiment, comments in sentiment_data.items():
            if comments:
                avg_likes_by_sentiment[sentiment] = sum([c['likes'] for c in comments]) / len(comments)
            else:
                avg_likes_by_sentiment[sentiment] = 0
        
        print(f"πŸ“Š Sentiment breakdown: {sentiment_counts}")
        print(f"πŸ“Š Confidence breakdown: {confidence_breakdown}")
        
        fig = plt.figure(figsize=(16, 10))
        gs = fig.add_gridspec(2, 2, hspace=0.3, wspace=0.3) 
        
        ax1 = fig.add_subplot(gs[0, 0])
        
        if total_comments > 0:
            labels = list(sentiment_counts.keys())
            sizes = list(sentiment_counts.values())
            colors = ['#2ecc71', '#e74c3c', '#95a5a6']
            explode = (0.05, 0.05, 0.05)
            
            non_zero_data = [(label, size, color, exp) for label, size, color, exp in zip(labels, sizes, colors, explode) if size > 0]
            if non_zero_data:
                labels, sizes, colors, explode = zip(*non_zero_data)
            
            wedges, texts, autotexts = ax1.pie(sizes, labels=labels, colors=colors, explode=explode,
                                              autopct=lambda pct: f'{pct:.1f}%\n({int(pct/100*total_comments)})',
                                              startangle=90, textprops={'fontsize': 10, 'weight': 'bold'})
            
            for autotext in autotexts:
                autotext.set_color('white')
                autotext.set_fontsize(9)
                autotext.set_weight('bold')
        
        ax1.set_title('πŸ’¬ Sentiment Distribution', fontsize=14, weight='bold', pad=15)
        
        ax2 = fig.add_subplot(gs[0, 1])
        
        conf_labels = list(confidence_breakdown.keys())
        conf_values = list(confidence_breakdown.values())
        conf_colors = ['#e74c3c', '#f39c12', '#2ecc71']
        
        bars = ax2.bar(conf_labels, conf_values, color=conf_colors, alpha=0.8)
        ax2.set_title('🎯 Analysis Confidence', fontsize=12, weight='bold')
        ax2.set_ylabel('Comments', fontsize=10)
        
        for bar, value in zip(bars, conf_values):
            height = bar.get_height()
            ax2.text(bar.get_x() + bar.get_width()/2., height + 0.1,
                    f'{value}', ha='center', va='bottom', fontweight='bold', fontsize=9)
        
        ax3 = fig.add_subplot(gs[1, 0])
        
        sent_labels = list(avg_likes_by_sentiment.keys())
        sent_values = list(avg_likes_by_sentiment.values())
        sent_colors = ['#2ecc71', '#e74c3c', '#95a5a6']
        
        bars = ax3.bar(sent_labels, sent_values, color=sent_colors, alpha=0.8)
        ax3.set_title('πŸ‘ Average Likes by Sentiment', fontsize=12, weight='bold')
        ax3.set_ylabel('Avg Likes', fontsize=10)
        
        for bar, value in zip(bars, sent_values):
            height = bar.get_height()
            ax3.text(bar.get_x() + bar.get_width()/2., height + 0.1,
                    f'{value:.1f}', ha='center', va='bottom', fontweight='bold', fontsize=9)
        
        ax4 = fig.add_subplot(gs[1, 1])
        ax4.axis('off')
        
        total_likes = sum([sum([c['likes'] for c in comments]) for comments in sentiment_data.values()])
        most_engaging_sentiment = max(avg_likes_by_sentiment.items(), key=lambda x: x[1])[0]
        dominant_sentiment = max(sentiment_counts.items(), key=lambda x: x[1])[0]
        
        insights_text = f"""🎯 KEY INSIGHTS:

πŸ“Š Total Comments: {total_comments}
πŸ‘ Total Likes: {total_likes:,}
πŸ† Dominant: {dominant_sentiment}
⚑ Most Engaging: {most_engaging_sentiment}
🎯 High Confidence: {confidence_breakdown['High']}/{total_comments}"""
        
        ax4.text(0.05, 0.95, insights_text, fontsize=10, 
                bbox=dict(boxstyle="round,pad=0.5", facecolor='lightblue', alpha=0.8),
                weight='bold', transform=ax4.transAxes, verticalalignment='top')
        
        fig.suptitle('πŸ“Š Sentiment Analysis Dashboard', 
                    fontsize=16, weight='bold', y=0.95)
        
        buffer = BytesIO()
        plt.savefig(buffer, format='png', dpi=200, bbox_inches='tight', facecolor='white')
        buffer.seek(0)
        
        pil_image = Image.open(buffer)
        plt.close()
        
        print("βœ… PREMIUM sentiment dashboard created! πŸ†")
        return pil_image
        
    except Exception as e:
        print(f"❌ Sentiment dashboard error: {str(e)}")
        print(f"❌ Error details: {traceback.format_exc()}")
        
        try:
            fig, ax = plt.subplots(figsize=(10, 6))
            ax.text(0.5, 0.5, f'πŸ“Š SENTIMENT ANALYSIS DASHBOARD\n\nProcessing Error: {str(e)}\n\nπŸ”„ Optimizing analysis...', 
                   ha='center', va='center', fontsize=12, weight='bold',
                   transform=ax.transAxes,
                   bbox=dict(boxstyle="round,pad=1", facecolor='lightgreen', alpha=0.8))
            ax.set_title('πŸ’¬ Sentiment Analysis - System Update', fontsize=14, weight='bold')
            ax.axis('off')
            
            buffer = BytesIO()
            plt.savefig(buffer, format='png', dpi=200, bbox_inches='tight', facecolor='white')
            buffer.seek(0)
            pil_image = Image.open(buffer)
            plt.close()
            return pil_image
        except:
            return None

def translate_to_english_llm(original_text):
    """Translate Korean keywords/text to English using LLM - OPTIMIZED"""
    try:            
        translation_prompt = f"""
        Translate to English concisely: {original_text[:200]}
        Return ONLY the translation.
        """
        
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": translation_prompt}],
            max_tokens=50,
            temperature=0.1
        )
        
        return response.choices[0].message.content.strip()
        
    except Exception as e:
        print(f"Translation error: {str(e)}")
        return original_text[:200] 

def create_public_opinion_bar_chart(opinion_results):
    try:
        print("πŸ“Š Creating public opinion analysis chart...")
        print(f"πŸ” Opinion results received: {opinion_results}")
        
        opinion_metrics = {}
        
        concerns = []
        if 'Key Concerns:' in opinion_results:
            concerns_line = opinion_results.split('Key Concerns:')[1].split('\n')[0]
            raw_concerns = [c.strip() for c in concerns_line.split(',') if c.strip()]
            for concern in raw_concerns[:3]:
                translated = translate_to_english_llm(concern)
                concerns.append(translated)
        
        viewpoints = []
        if 'Popular Viewpoints:' in opinion_results:
            viewpoints_line = opinion_results.split('Popular Viewpoints:')[1].split('\n')[0]
            raw_viewpoints = [v.strip() for v in viewpoints_line.split(',') if v.strip()]
            for viewpoint in raw_viewpoints[:3]: 
                translated = translate_to_english_llm(viewpoint)
                viewpoints.append(translated)
        
        engagement_level = "Medium"
        controversy_level = "Low"
        overall_sentiment = "Mixed"
        
        if 'Audience Engagement:' in opinion_results:
            engagement_level = opinion_results.split('Audience Engagement:')[1].split('\n')[0].strip()
        
        if 'Controversy Level:' in opinion_results:
            controversy_level = opinion_results.split('Controversy Level:')[1].split('\n')[0].strip()
            
        if 'Overall Public Sentiment:' in opinion_results:
            overall_sentiment = opinion_results.split('Overall Public Sentiment:')[1].split('\n')[0].strip()
        
        all_topics = []
        
        for i, concern in enumerate(concerns):
            weight = 8 - i
            all_topics.append({
                'topic': concern,
                'category': 'Key Concerns',
                'weight': weight,
                'color': '#e74c3c'
            })
        
        for i, viewpoint in enumerate(viewpoints):
            weight = 6 - i
            all_topics.append({
                'topic': viewpoint,
                'category': 'Popular Views',
                'weight': weight,
                'color': '#2ecc71'
            })
        
        engagement_scores = {'High': 8, 'Medium': 5, 'Low': 2}
        engagement_score = engagement_scores.get(engagement_level, 5)
        all_topics.append({
            'topic': f'Engagement: {engagement_level}',
            'category': 'Metrics',
            'weight': engagement_score,
            'color': '#f39c12'
        })
        
        controversy_scores = {'High': 7, 'Medium': 4, 'Low': 1}
        controversy_score = controversy_scores.get(controversy_level, 3)
        all_topics.append({
            'topic': f'Controversy: {controversy_level}',
            'category': 'Metrics',
            'weight': controversy_score,
            'color': '#9b59b6'
        })
        
        if len(all_topics) <= 2:
            all_topics = [
                {'topic': 'General Discussion', 'category': 'Popular Views', 'weight': 6, 'color': '#2ecc71'},
                {'topic': 'Mixed Reactions', 'category': 'Key Concerns', 'weight': 5, 'color': '#e74c3c'},
                {'topic': 'Active Participation', 'category': 'Metrics', 'weight': 7, 'color': '#f39c12'}
            ]
        
        fig, ax = plt.subplots(figsize=(14, 8))
        
        y_positions = range(len(all_topics))
        weights = [item['weight'] for item in all_topics]
        colors = [item['color'] for item in all_topics]
        labels = [item['topic'] for item in all_topics]
        
        bars = ax.barh(y_positions, weights, color=colors, alpha=0.8)
        
        for i, (bar, label) in enumerate(zip(bars, labels)):
            ax.text(bar.get_width() + 0.2, bar.get_y() + bar.get_height()/2, 
                   label, va='center', fontweight='bold', fontsize=10)
        
        ax.set_title('πŸ‘₯ Public Opinion Analysis', fontsize=16, weight='bold', pad=20)
        ax.set_xlabel('Opinion Strength Score', fontsize=12, weight='bold')
        ax.set_yticks([])
        ax.grid(axis='x', alpha=0.3)
        
        insights_text = f"""πŸ“Š Summary: Engagement: {engagement_level} | Controversy: {controversy_level} | Sentiment: {overall_sentiment}"""
        fig.text(0.02, 0.02, insights_text, fontsize=10, 
                bbox=dict(boxstyle="round,pad=0.3", facecolor='lightgray', alpha=0.8))
        
        plt.tight_layout()
        
        buffer = BytesIO()
        plt.savefig(buffer, format='png', dpi=200, bbox_inches='tight', facecolor='white')
        buffer.seek(0)
        
        pil_image = Image.open(buffer)
        plt.close()
        
        print("βœ… Public opinion chart created! πŸ†")
        return pil_image
        
    except Exception as e:
        print(f"❌ Public opinion chart error: {str(e)}")
        
        # Simple fallback chart
        try:
            fig, ax = plt.subplots(figsize=(10, 6))
            ax.text(0.5, 0.5, f'🎯 PUBLIC OPINION ANALYSIS\n\nProcessing...', 
                   ha='center', va='center', fontsize=12, weight='bold',
                   transform=ax.transAxes,
                   bbox=dict(boxstyle="round,pad=1", facecolor='lightblue', alpha=0.8))
            ax.set_title('πŸ‘₯ Public Opinion Analysis', fontsize=14, weight='bold')
            ax.axis('off')
            
            buffer = BytesIO()
            plt.savefig(buffer, format='png', dpi=200, bbox_inches='tight', facecolor='white')
            buffer.seek(0)
            pil_image = Image.open(buffer)
            plt.close()
            return pil_image
        except:
            return None

def sentiment_classification_llm(comments_list, comment_limit):
    """Step 1: LLM for sentiment classification - OPTIMIZED for speed"""
    try:
        print("🎯 Step 1: Starting OPTIMIZED sentiment classification...")
        
        # OPTIMIZATION: Reduce comments to top 20 for faster processing
        top_comments = comments_list[:comment_limit]
        
        # Create batch prompt with all comments
        batch_comments_text = ""
        for i, comment_data in enumerate(top_comments, 1):
            batch_comments_text += f"{i}. \"{comment_data['comment'][:100]}\" (Likes: {comment_data['likes']})\n"  # Truncate long comments
        
        sentiment_prompt = f"""
        Classify sentiment of these {len(top_comments)} YouTube comments quickly and efficiently:
        Note: Advanced sentiment analysis - consider sarcasm, slang, emojis, and context
        
        {batch_comments_text}

        Return in this EXACT format for each comment:

        Comment 1: Positive/Negative/Neutral - High/Medium/Low confidence - Brief reason
        Comment 2: Positive/Negative/Neutral - High/Medium/Low confidence - Brief reason
        [Continue for all...]

        Be fast and precise. Classify ALL {len(top_comments)} comments.
        """
        
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": sentiment_prompt}],
            max_tokens=1500,  # Reduced for faster processing
            temperature=0.1
        )
        
        batch_result = response.choices[0].message.content.strip()
        
        # Parse the batch result - SIMPLIFIED parsing
        classified_comments = []
        result_lines = batch_result.split('\n')
        
        for i, line in enumerate(result_lines):
            if f"Comment {i+1}:" in line and i < len(top_comments):
                # Extract sentiment info from line
                sentiment_analysis = line.replace(f"Comment {i+1}:", "").strip()
                
                classified_comments.append({
                    'comment': top_comments[i]['comment'],
                    'likes': top_comments[i]['likes'],
                    'sentiment_analysis': sentiment_analysis,
                    'index': i + 1
                })
        
        # Fill any missing comments with default values
        while len(classified_comments) < len(top_comments):
            missing_index = len(classified_comments)
            classified_comments.append({
                'comment': top_comments[missing_index]['comment'],
                'likes': top_comments[missing_index]['likes'],
                'sentiment_analysis': "Neutral - Medium confidence - Processing completed",
                'index': missing_index + 1
            })
        
        print(f"βœ… OPTIMIZED sentiment classification completed for {len(classified_comments)} comments")
        return classified_comments
        
    except Exception as e:
        print(f"❌ Sentiment classification error: {str(e)}")
        # Quick fallback
        classified_comments = []
        for i, comment_data in enumerate(comments_list[:15], 1):  # Even smaller fallback
            classified_comments.append({
                'comment': comment_data['comment'],
                'likes': comment_data['likes'],
                'sentiment_analysis': "Neutral - Medium confidence - Quick processing",
                'index': i
            })
        return classified_comments

def public_opinion_analysis_llm(classified_comments):
    """Step 3: LLM for public opinion analysis - OPTIMIZED"""
    try:
        print("πŸ“Š Step 3: Starting OPTIMIZED public opinion analysis...")
        
        positive_comments = [item for item in classified_comments if 'Positive' in item['sentiment_analysis']][:5]
        negative_comments = [item for item in classified_comments if 'Negative' in item['sentiment_analysis']][:5]
        neutral_comments = [item for item in classified_comments if 'Neutral' in item['sentiment_analysis']][:5]
        
        opinion_prompt = f"""
        Analyze public opinion from these YouTube comments quickly:

        POSITIVE ({len(positive_comments)}): {', '.join([item['comment'] for item in positive_comments])}
        NEGATIVE ({len(negative_comments)}): {', '.join([item['comment'] for item in negative_comments])}
        NEUTRAL ({len(neutral_comments)}): {', '.join([item['comment'] for item in neutral_comments])}

        Return ONLY in this format:

        TRANSLATIONS (if needed):
        [Original comment] β†’ [English translation]
        
        Overall Public Sentiment: [Positive/Negative/Mixed/Neutral]
        Dominant Opinion: [Main viewpoint in one sentence]
        Key Concerns: [Top 3 concerns, comma-separated]
        Popular Viewpoints: [Top 3 popular opinions, comma-separated]
        Controversy Level: [High/Medium/Low]
        Audience Engagement: [High/Medium/Low]

        Be fast and objective.
        """
        
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": opinion_prompt}],
            max_tokens=300,
            temperature=0.2
        )
        
        opinion_results = response.choices[0].message.content.strip()
        print(f"βœ… OPTIMIZED public opinion analysis completed")
        
        return opinion_results
        
    except Exception as e:
        print(f"❌ Public opinion analysis error: {str(e)}")
        return "Overall Public Sentiment: Mixed\nDominant Opinion: General discussion\nKey Concerns: none, identified, quickly\nPopular Viewpoints: standard, response, analysis\nControversy Level: Low\nAudience Engagement: Medium"


def create_video_info_display(video_info):
    """Create beautiful HTML display for video information"""
    try:
        title = video_info.get('title', 'N/A')
        channel = video_info.get('channel_name', 'N/A')
        views = video_info.get('view_count', 0)
        likes = video_info.get('like_count', 0)
        duration = video_info.get('duration', 'N/A')
        published = video_info.get('publish_date', 'N/A')
        video_id = video_info.get('video_id', 'N/A')
        
        # Format numbers
        views_formatted = f"{views:,}" if isinstance(views, int) else str(views)
        likes_formatted = f"{likes:,}" if isinstance(likes, int) else str(likes)
        
        video_info_html = f"""
        <div style='background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); 
                    padding: 20px; border-radius: 15px; margin: 10px 0; 
                    box-shadow: 0 8px 25px rgba(0,0,0,0.15);'>
            <h3 style='color: white; margin: 0 0 15px 0; text-align: center; 
                       text-shadow: 2px 2px 4px rgba(0,0,0,0.3); font-size: 1.4em;'>
                πŸ“Ή Video Information
            </h3>
            
            <div style='display: grid; grid-template-columns: 1fr 1fr; gap: 15px; 
                        background: rgba(255,255,255,0.1); padding: 15px; border-radius: 10px;'>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>🎬 TITLE</div>
                    <div style='color: white; font-size: 1em; line-height: 1.3;'>{title}</div>
                </div>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>πŸ“Ί CHANNEL</div>
                    <div style='color: white; font-size: 1em;'>{channel}</div>
                </div>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>πŸ‘€ VIEWS</div>
                    <div style='color: white; font-size: 1.1em; font-weight: bold;'>{views_formatted}</div>
                </div>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>πŸ‘ LIKES</div>
                    <div style='color: white; font-size: 1.1em; font-weight: bold;'>{likes_formatted}</div>
                </div>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>⏱️ DURATION</div>
                    <div style='color: white; font-size: 1em;'>{duration}</div>
                </div>
                
                <div style='background: rgba(255,255,255,0.2); padding: 12px; border-radius: 8px;'>
                    <div style='color: #FFD700; font-weight: bold; margin-bottom: 5px; font-size: 0.9em;'>πŸ“… PUBLISHED</div>
                    <div style='color: white; font-size: 1em;'>{published}</div>
                </div>
            </div>
            
            <div style='text-align: center; margin-top: 15px;'>
                <div style='color: rgba(255,255,255,0.8); font-size: 0.9em;'>
                    🎯 Video ID: {video_id}
                </div>
            </div>
        </div>
        """
        
        return video_info_html
        
    except Exception as e:
        print(f"❌ Video info display error: {str(e)}")
        return f"""
        <div style='background: #ff6b6b; padding: 15px; border-radius: 10px; margin: 10px 0;'>
            <h3 style='color: white; margin: 0; text-align: center;'>❌ Video Information Error</h3>
            <p style='color: white; margin: 10px 0 0 0; text-align: center;'>
                Unable to load video information: {str(e)}
            </p>
        </div>
        """

def final_analysis_report_llm(video_info, news, classified_comments, keyword_results, opinion_results):
    """Step 4: Final comprehensive analysis report generation in English"""
    try:
        print("πŸ“ˆ Step 4: Generating final analysis report in English...")
        
        total_comments = len(classified_comments)
        positive_count = len([item for item in classified_comments if 'Positive' in item['sentiment_analysis']])
        negative_count = len([item for item in classified_comments if 'Negative' in item['sentiment_analysis']])
        neutral_count = total_comments - positive_count - negative_count
        
        positive_pct = (positive_count / total_comments * 100) if total_comments > 0 else 0
        negative_pct = (negative_count / total_comments * 100) if total_comments > 0 else 0
        neutral_pct = (neutral_count / total_comments * 100) if total_comments > 0 else 0
        
        top_comments = sorted(classified_comments, key=lambda x: x['likes'], reverse=True)[:5]
        
        newline = '\n'
        top_comments_formatted = newline.join([
            f"{i+1}. \"{item['comment']}\" ({item['likes']} likes) - {item['sentiment_analysis'].split('Reason: ')[1] if 'Reason: ' in item['sentiment_analysis'] else 'Analysis provided'}" 
            for i, item in enumerate(top_comments)
        ])

        final_prompt = f"""
        Create a comprehensive YouTube video analysis report in ENGLISH using all the processed data.

        VIDEO INFO:
        {video_info}

        SENTIMENT ANALYSIS RESULTS:
        - Total Comments Analyzed: {total_comments}
        - Positive: {positive_count} ({positive_pct:.1f}%)
        - Negative: {negative_count} ({negative_pct:.1f}%)
        - Neutral: {neutral_count} ({neutral_pct:.1f}%)

        PUBLIC OPINION ANALYSIS:
        {opinion_results}

        TOP COMMENTS BY LIKES:
        {top_comments_formatted}

        Create a detailed analysis report in ENGLISH using the following EXACT format:

        # 🎬 YouTube Video Analysis Report
        
        ## πŸ“Œ Key Insights
        `[Main video topic and focus]`

        ## 🎯 Video Overview
        [Comprehensive summary of video content and context in English]

        ## πŸ’¬ Comment Sentiment Analysis

        ### πŸ“Š Sentiment Distribution
        - **Positive**: {positive_pct:.1f}% ({positive_count} comments)
        - **Negative**: {negative_pct:.1f}% ({negative_count} comments)
        - **Neutral**: {neutral_pct:.1f}% ({neutral_count} comments)

        ### πŸ” Key Comment Insights
        1. **Positive Reactions**: [Analysis of positive sentiment patterns in English]
        2. **Negative Reactions**: [Analysis of negative sentiment patterns in English]
        3. **Core Discussion Topics**: [Main topics and themes from comments in English]

        ### 🎯 Top Engaged Comments Analysis
        [Detailed breakdown of most-liked comments with sentiment explanations in English]

        ### 🎯 Critical Comments Analysis
        [Detailed breakdown of most-negative comments with sentiment explanations in English]

        ### πŸ‘₯ Public Opinion Summary
        [Synthesis of public opinion analysis results in English]

        ## πŸ“° Content Relevance & Impact
        [Analysis of video's relevance to current trends and news in English]

        ## πŸ’‘ Key Findings
        1. **Audience Engagement Pattern**: [Major finding from sentiment analysis in English]
        2. **Public Opinion Trend**: [Major finding from opinion analysis in English]
        3. **Content Impact Assessment**: [Overall impact and reception analysis in English]

        ## 🎯 Business Intelligence

        ### πŸš€ Opportunity Factors
        - **Content Strategy**: [Content opportunities based on positive sentiment in English]
        - **Audience Engagement**: [Engagement optimization opportunities in English]
        - **Brand Positioning**: [Brand opportunities identified from analysis in English]

        ### ⚠️ Risk Factors
        - **Reputation Management**: [Potential risks from negative sentiment in English]
        - **Content Concerns**: [Content-related concerns from analysis in English]
        - **Audience Feedback**: [Critical feedback points requiring attention in English]

        ## πŸ“Š Executive Summary
        **Bottom Line**: [Two-sentence summary of the analysis and main recommendation in English]

        **Key Metrics**: Total Comments: {total_comments} | Engagement Score: [Calculate based on sentiment] |  

        ---
        **Analysis Completed**: {datetime.datetime.now()}
        **Comments Processed**: {total_comments} | **Analysis Pipeline**: Premium 3-stage LLM process completed
        **Report Language**: English | **Data Sources**: YouTube Comments + Video Info + Latest News
        """
        
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": final_prompt}],
            max_tokens=2000,  # Increased for comprehensive English report
            temperature=0.5
        )
        
        final_report = response.choices[0].message.content.strip()
        print(f"βœ… Final English analysis report generated")
        
        return final_report
        
    except Exception as e:
        print(f"❌ Final report generation error: {str(e)}")
        return f"""# ❌ Analysis Report Generation Failed

## Error Details
**Error**: {str(e)}
**Time**: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}

## Status
Analysis completed with {len(classified_comments)} comments processed.
"""

def comment_analyzer(video_id="9P6H2QywDjM", comment_limit=10):
    try:
        print(f"πŸš€ Starting OPTIMIZED comprehensive analysis for video: {video_id}")
        
        print("πŸ“Š Collecting video data in parallel...")
        with concurrent.futures.ThreadPoolExecutor(max_workers=2) as executor:
            video_info_future = executor.submit(get_youtube_video_info, video_id=video_id)
            comments_future = executor.submit(get_youtube_comments, video_id=video_id, limit=comment_limit, order='relevance')  # Reduced from 100 to 50
            
            # Get results
            video_info, video_info_dict = video_info_future.result()
            comments = comments_future.result()
            # summarization = summary_future.result()
        # video_info, video_info_dict = get_youtube_video_info(video_id)
        if video_info == None: return "Check video ID"
        # comments = get_youtube_comments(video_id, comment_limit, order="relevance")
        # summarization = summarize_video()

        sorted_comments = comments.sort_values('likes', ascending=False)
        
        comments_for_analysis = [
            {'comment': comment, 'likes': likes} 
            for comment, likes in zip(sorted_comments['comment'].tolist()[:50], sorted_comments['likes'].tolist()[:50])
        ]
        
        news = ""  # Skip news for speed optimization
        
        print("πŸ€– Starting OPTIMIZED LLM analysis pipeline...")
        
        # Step 1: Sentiment Classification (optimized)
        classified_comments = sentiment_classification_llm(comments_for_analysis, comment_limit)
        
        # Step 2: Public Opinion Analysis (optimized)
        opinion_results = public_opinion_analysis_llm(classified_comments)
        
        # Step 3: Create Visual Charts in parallel
        print("πŸ“Š Creating charts in parallel...")
        with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:
            sentiment_future = executor.submit(create_sentiment_pie_chart, classified_comments)
            opinion_future = executor.submit(create_public_opinion_bar_chart, opinion_results)
            final_report_future = executor.submit(final_analysis_report_llm, video_info, news, classified_comments, "", opinion_results)
            
            sentiment_chart = sentiment_future.result()
            opinion_chart = opinion_future.result()
            final_report = final_report_future.result()
                        
        print("βœ… OPTIMIZED comprehensive analysis complete!")
        video_info_markdown = f"""
## πŸ“Ή Video Information

| Video Information |
|------------|
| **🎬 Channel:**  {video_info_dict.get('channel_title', 'N/A')[:20]}.. |
| **🎬 Title:**  {video_info_dict.get('title', 'N/A')[:20]}.. |
| **πŸ‘€ Views:** {video_info_dict.get('view_count', 'N/A'):,} |
| **πŸ‘ Likes:** {video_info_dict.get('like_count', 'N/A'):,} |
| **πŸ“… Published:** {video_info_dict.get('published_at', 'N/A')} |
"""
        
        return final_report, video_info_markdown, sentiment_chart, opinion_chart
        
    except Exception as e:
        print(f"❌ Analysis error: {str(e)}")
        error_report = f"# ❌ Analysis Failed\n\nError: {str(e)}\nTime: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
        return error_report, None, None