LINC-BIT's picture
Upload 1912 files
b84549f verified
from transformers import BlipForQuestionAnswering, BlipConfig,BlipModel
import torch
from torch import nn
from abc import ABC, abstractmethod
from copy import deepcopy
from typing import Optional, Union
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
import tqdm
from utils.dl.common.model import get_model_device, get_model_latency, get_model_size, set_module
from utils.dl.common.model import set_module, get_module, get_super_module
from utils.common.log import logger
from new_impl.cv.elasticdnn.pipeline.offline.fm_lora.base import FMLoRA_Util, LoRA
from transformers.models.blip.modeling_blip import BlipAttention
#from transformers.models.blip.modeling_blip_text import BlipTextSelfAttention,BlipTextAttention,BlipTextSelfOutput
from transformers.models.beit.modeling_beit import BeitSelfAttention,BeitConfig
from new_impl.cv.elasticdnn.pipeline.offline.fm_to_md.base import FM_to_MD_Util
from new_impl.cv.elasticdnn.model.base import Abs, KTakesAll, ElasticDNNUtil, Layer_WrappedWithFBS
from typing import Optional, Tuple
import math
# def blip(num_classes):
# model = BlipForQuestionAnswering.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
# # linear = model.text_decoder.cls.predictions.decoder
# # new_linear = nn.Linear(linear.in_features,30524,bias = True)
# # set_module(model,'text_decoder.cls.predictions.decoder',new_linear)
# return model
# def blip(num_classes):
# model = BlipForQuestionAnswering.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
# linear = model.text_decoder.cls.predictions.decoder
# new_linear = nn.Linear(linear.in_features,num_classes,bias = True)
# set_module(model,'text_decoder.cls.predictions.decoder',new_linear)
# return model
# class dinat(nn.Module):
# def __init__(self,num_classes):
# super(dinat,self).__init__()
# self.dinat = DinatModel.from_pretrained('shi-labs/dinat-mini-in1k-224')
# self.classifier = nn.Linear(768,num_classes)
# def forward(self,**sample):
# output = self.dinat(**sample)[-1]#output the last hidden
# output = self.classifier(output[1])
# return output
class ToQKV_WrappedWithLoRA(nn.Module):
def __init__(self, fc: nn.Linear, ab_r: int):
super(ToQKV_WrappedWithLoRA, self).__init__()
self.fc = fc
self.ab = self.create_ab_as_linear(fc.weight.data, ab_r)
def create_ab_as_linear(self, fc_weight: torch.Tensor, ab_r: int):
res = nn.Sequential(
LoRA(fc_weight.size(1), fc_weight.size(0) // ab_r, bias=False),
LoRA(fc_weight.size(0) // ab_r, fc_weight.size(0), bias=False)
).to(fc_weight.device)
nn.init.kaiming_uniform_(res[0].weight, a=5 ** 0.5)
nn.init.zeros_(res[1].weight)
return res
def forward(self, x):
x1 = self.fc(x)
x2 = self.ab(x)
return x1 + x2
class FMLoRA_beit_Util(FMLoRA_Util):
@torch.no_grad()
def add_lora_ab_to_fm(self, fm: nn.Module, ab_r: int, samples: torch.Tensor):
fm.eval()
# print(samples)
# for k, v in samples.items():
# if isinstance(v, torch.Tensor):
# samples[k] = v.to(get_model_device(fm))
#o1 = fm.generate(**samples)
o1 = fm(samples)
for name, module in fm.named_modules():
if name.endswith(('query', 'key', 'value')):
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
elif name.endswith('.qkv'):
set_module(fm, name, ToQKV_WrappedWithLoRA(module, ab_r))
#o2 = fm.generate(**samples)
o2 = fm(samples)
if isinstance(o1, tuple):
o1 = o1[-1]
o2 = o2[-1]
output_diff = ((o1.logits - o2.logits) ** 2).sum()
assert output_diff < 1e-5
return fm
@torch.no_grad()
def absorb_lora_and_recover_net_structure(self, fm: nn.Module, samples: torch.Tensor):
fm.eval()
# print('absorb lora before')
# for k, v in samples.items():
# if isinstance(v, torch.Tensor):
# samples[k] = v.to(get_model_device(fm))
o1 = fm(samples)
for name, module in fm.named_modules():
if not isinstance(module, ToQKV_WrappedWithLoRA):
continue
fc = module.fc
ab = module.ab
fc.weight.add_(ab[1].weight @ ab[0].weight)
set_module(fm, name, fc)
# print('absorb lora after')
o2 = fm(samples)
if isinstance(o1, tuple):
o1 = o1[-1]
o2 = o2[-1]
output_diff = ((o1.logits - o2.logits) ** 2).sum()
assert output_diff < 1e-6, output_diff
return fm
####Here start with Fbs
# class blipTextAttentionPrunable(BlipTextSelfAttention):
# def __init__(self,is_cross_attention):
# config = BlipConfig.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
# super(blipTextAttentionPrunable,self).__init__(config.text_config,is_cross_attention)
# def save_attn_gradients(self, attn_gradients):
# self.attn_gradients = attn_gradients
# def get_attn_gradients(self):
# return self.attn_gradients
# def save_attention_map(self, attention_map):
# self.attention_map = attention_map
# def get_attention_map(self):
# return self.attention_map
# def transpose_for_scores(self, x):
# new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
# x = x.view(*new_x_shape)
# return x.permute(0, 2, 1, 3)
# def forward(
# self,
# hidden_states: torch.Tensor,
# attention_mask: Optional[torch.FloatTensor] = None,
# head_mask: Optional[torch.FloatTensor] = None,
# encoder_hidden_states: Optional[torch.FloatTensor] = None,
# encoder_attention_mask: Optional[torch.FloatTensor] = None,
# past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
# output_attentions: Optional[bool] = False,
# ) -> Tuple[torch.Tensor]:
# mixed_query_layer = self.query(hidden_states)
# # If this is instantiated as a cross-attention module, the keys
# # and values come from an encoder; the attention mask needs to be
# # such that the encoder's padding tokens are not attended to.
# is_cross_attention = encoder_hidden_states is not None
# if is_cross_attention:
# key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
# value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
# attention_mask = encoder_attention_mask
# elif past_key_value is not None:
# key_layer = self.transpose_for_scores(self.key(hidden_states))
# value_layer = self.transpose_for_scores(self.value(hidden_states))
# key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
# value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
# else:
# key_layer = self.transpose_for_scores(self.key(hidden_states))
# value_layer = self.transpose_for_scores(self.value(hidden_states))
# query_layer = self.transpose_for_scores(mixed_query_layer)
# past_key_value = (key_layer, value_layer)
# # Take the dot product between "query" and "key" to get the raw attention scores.
# attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
# seq_length = hidden_states.size()[1]
# position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
# position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
# distance = position_ids_l - position_ids_r
# positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
# positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
# if self.position_embedding_type == "relative_key":
# relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
# attention_scores = attention_scores + relative_position_scores
# elif self.position_embedding_type == "relative_key_query":
# relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
# relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
# attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
# attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# if attention_mask is not None:
# # Apply the attention mask is (precomputed for all layers in BlipTextModel forward() function)
# attention_scores = attention_scores + attention_mask.to(attention_scores.device)
# # Normalize the attention scores to probabilities.
# attention_probs = nn.Softmax(dim=-1)(attention_scores)
# # This is actually dropping out entire tokens to attend to, which might
# # seem a bit unusual, but is taken from the original Transformer paper.
# attention_probs_dropped = self.dropout(attention_probs)
# # Mask heads if we want to
# if head_mask is not None:
# attention_probs_dropped = attention_probs_dropped * head_mask
# context_layer = torch.matmul(attention_probs_dropped, value_layer)
# context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
# new_context_layer_shape = context_layer.size()[:-2] + (-1,)
# context_layer = context_layer.view(*new_context_layer_shape)
# outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
# outputs = outputs + (past_key_value,)
# return outputs
# @staticmethod
# def init_from_exist_self_attn(attn: BlipTextSelfAttention,is_cross_attention):
# # print(attn)
# res = blipTextAttentionPrunable(is_cross_attention)
# for attr in dir(attn):
# # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
# # continue
# # if isinstance(getattr(attn, attr), nn.Module):
# # print(attr)
# if isinstance(getattr(attn, attr), nn.Module):
# try:
# # print(attr, 'ok')
# setattr(res, attr, getattr(attn, attr))
# except Exception as e:
# print(attr, str(e))
# return res
# class blipSelfTextAttentionPrunable(BlipTextAttention):
# def __init__(self, config, is_cross_attention=False):
# self.self = blipTextAttentionPrunable(config, is_cross_attention)
# self.output = BlipTextSelfOutput(config)
# self.pruned_heads = set()
# super(blipSelfTextAttentionPrunable,self).__init__(config)
# def prune_heads(self, heads):
# if len(heads) == 0:
# return
# heads, index = find_pruneable_heads_and_indices(
# heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
# )
# # Prune linear layers
# self.self.query = prune_linear_layer(self.self.query, index)
# self.self.key = prune_linear_layer(self.self.key, index)
# self.self.value = prune_linear_layer(self.self.value, index)
# self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# # Update hyper params and store pruned heads
# self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
# self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
# self.pruned_heads = self.pruned_heads.union(heads)
# def forward(
# self,
# hidden_states: torch.Tensor,
# attention_mask: Optional[torch.FloatTensor] = None,
# head_mask: Optional[torch.FloatTensor] = None,
# encoder_hidden_states: Optional[torch.FloatTensor] = None,
# encoder_attention_mask: Optional[torch.FloatTensor] = None,
# past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
# output_attentions: Optional[bool] = False,
# ) -> Tuple[torch.Tensor]:
# self_outputs = self.self(
# hidden_states,
# attention_mask,
# head_mask,
# encoder_hidden_states,
# encoder_attention_mask,
# past_key_value,
# output_attentions,
# )
# attention_output = self.output(self_outputs[0], hidden_states)
# outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
# return outputs
# @staticmethod
# def init_from_exist_self_attn(attn: BlipTextAttention,config,is_cross_attention):
# # print(attn)
# res = blipTextAttentionPrunable(config,is_cross_attention)
# for attr in dir(attn):
# # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
# # continue
# # if isinstance(getattr(attn, attr), nn.Module):
# # print(attr)
# if isinstance(getattr(attn, attr), nn.Module):
# try:
# # print(attr, 'ok')
# setattr(res, attr, getattr(attn, attr))
# except Exception as e:
# print(attr, str(e))
# return res
# class blipSelfAttentionPrunable(BlipAttention):
# def __init__(self):
# config = BlipConfig.from_pretrained('new_impl/mm/Vis_bert/QuestionAnswering/VisBert_pretrained')
# super(blipSelfAttentionPrunable, self).__init__(config.vision_config)
# def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
# return tensor.view(bsz, seq_len, self.num_heads, -1).transpose(1, 2).contiguous()
# def forward(
# self,
# hidden_states: torch.Tensor,
# head_mask: Optional[torch.Tensor] = None,
# output_attentions: Optional[bool] = False,
# ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# """Input shape: Batch x Time x Channel"""
# bsz, tgt_len, embed_dim = hidden_states.size()
# mixed_qkv = (
# self.qkv(hidden_states)
# .reshape(bsz, tgt_len, 3, self.num_heads, -1)
# .permute(2, 0, 3, 1, 4)
# )
# query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]
# # Take the dot product between "query" and "key" to get the raw attention scores.
# attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
# attention_scores = attention_scores * self.scale
# # Normalize the attention scores to probabilities.
# attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# # This is actually dropping out entire tokens to attend to, which might
# # seem a bit unusual, but is taken from the original Transformer paper.
# attention_probs = self.dropout(attention_probs)
# # Mask heads if we want to
# if head_mask is not None:
# attention_probs = attention_probs * head_mask
# context_layer = torch.matmul(attention_probs, value_states).permute(0, 2, 1, 3)
# new_context_layer_shape = context_layer.size()[:-2] + (-1,)
# context_layer = context_layer.reshape(new_context_layer_shape)
# output = self.projection(context_layer)
# outputs = (output, attention_probs) if output_attentions else (output, None)
# return outputs
# @staticmethod
# def init_from_exist_self_attn(attn: BlipAttention):
# # print(attn)
# res = blipSelfAttentionPrunable()
# for attr in dir(attn):
# # if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
# # continue
# # if isinstance(getattr(attn, attr), nn.Module):
# # print(attr)
# if isinstance(getattr(attn, attr), nn.Module):
# try:
# # print(attr, 'ok')
# setattr(res, attr, getattr(attn, attr))
# except Exception as e:
# print(attr, str(e))
# return res
class BeitSelfAttentionPrunable(BeitSelfAttention):
def __init__(self, config: BeitConfig, window_size: Optional[tuple] = None) -> None:
config = BeitConfig.from_pretrained('new_impl/cv/beit/beit_model')
super(BeitSelfAttentionPrunable, self).__init__(config)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, -1)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
relative_position_bias: Optional["BeitRelativePositionBias"] = None,
) -> Union[Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Add relative position bias if present.
if self.relative_position_bias is not None:
attention_scores = attention_scores + self.relative_position_bias().unsqueeze(0)
# Add shared relative position bias if provided.
if relative_position_bias is not None:
attention_scores = attention_scores + relative_position_bias
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (-1,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
@staticmethod
def init_from_exist_self_attn(attn: BeitSelfAttention,config):
# print(attn)
res = BeitSelfAttentionPrunable(config)
for attr in dir(attn):
# if str(attr) in ['transpose_for_scores'] or str(attr).startswith('_'):
# continue
# if isinstance(getattr(attn, attr), nn.Module):
# print(attr)
if isinstance(getattr(attn, attr), nn.Module):
try:
# print(attr, 'ok')
setattr(res, attr, getattr(attn, attr))
except Exception as e:
print(attr, str(e))
return res
class FM_to_MD_beit_Util(FM_to_MD_Util):
def init_md_from_fm_by_reducing_width(self, fm: nn.Module, reducing_width_ratio: int) -> nn.Module:
fm_vis = deepcopy(fm)
config = BeitConfig.from_pretrained('new_impl/cv/beit/beit_model')
for block_i,block in enumerate(fm_vis.beit.encoder.layer):
set_module(block, 'attention.attention', BeitSelfAttentionPrunable.init_from_exist_self_attn(block.attention.attention,config))
def _f(n):
return int(n // reducing_width_ratio)
# def _rand_indexes(n):
# return torch.randperm(n)[0: int(n // reducing_width_ratio)]
def l1_max_indexes(p: torch.Tensor, dim=0):
assert dim in [0, 1]
assert p.dim() in [1, 2, 4]
if dim == 1:
p = p.T
p_norm = p.abs().contiguous().view(p.size(0), -1).sum(dim=1)
n = p.size(0)
return p_norm.argsort(descending=True)[0: int(n // reducing_width_ratio)].sort()[0]
for block_i, block in enumerate(fm_vis.beit.encoder.layer):
for k in ['query', 'key', 'value']:
qkv = get_module(block, f'attention.attention.{k}')
new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
qkv.bias is not None, qkv.weight.device)
indexes = l1_max_indexes(qkv.weight.data, 0)
new_qkv.weight.data.copy_(qkv.weight.data[indexes])
if qkv.bias is not None:
new_qkv.bias.data.copy_(qkv.bias.data[indexes])
set_module(block, f'attention.attention.{k}', new_qkv)
proj = get_module(block, f'attention.output.dense')
new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
proj.bias is not None, proj.weight.device)
new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
if proj.bias is not None:
new_proj.bias.data.copy_(proj.bias.data)
set_module(block, f'attention.output.dense', new_proj)
fc1 = get_module(block, f'intermediate.dense')
new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features),
fc1.bias is not None, fc1.weight.device)
indexes = l1_max_indexes(fc1.weight.data, 0)
new_fc1.weight.data.copy_(fc1.weight.data[indexes])
if fc1.bias is not None:
new_fc1.bias.data.copy_(fc1.bias.data[indexes])
set_module(block, f'intermediate.dense', new_fc1)
fc2 = get_module(block, f'output.dense')
new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features,
fc2.bias is not None, fc2.weight.device)
new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
if fc2.bias is not None:
new_fc2.bias.data.copy_(fc2.bias.data)
set_module(block, f'output.dense', new_fc2)
# for block_i, block in enumerate(fm_vis.text_decoder.bert.encoder.layer):
# for k in ['query', 'key', 'value']:
# qkv = get_module(block, f'crossattention.self.{k}')
# new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
# qkv.bias is not None, qkv.weight.device)
# indexes = l1_max_indexes(qkv.weight.data, 0)
# new_qkv.weight.data.copy_(qkv.weight.data[indexes])
# if qkv.bias is not None:
# new_qkv.bias.data.copy_(qkv.bias.data[indexes])
# set_module(block, f'crossattention.self.{k}', new_qkv)
# proj = get_module(block, f'crossattention.output.dense')
# new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
# proj.bias is not None, proj.weight.device)
# new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
# if proj.bias is not None:
# new_proj.bias.data.copy_(proj.bias.data)
# set_module(block, f'crossattention.output.dense', new_proj)
# for block_i, block in enumerate(fm_vis.text_encoder.encoder.layer):
# for k in ['query', 'key', 'value']:
# qkv = get_module(block, f'attention.self.{k}')
# new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
# qkv.bias is not None, qkv.weight.device)
# indexes = l1_max_indexes(qkv.weight.data, 0)
# new_qkv.weight.data.copy_(qkv.weight.data[indexes])
# if qkv.bias is not None:
# new_qkv.bias.data.copy_(qkv.bias.data[indexes])
# set_module(block, f'attention.self.{k}', new_qkv)
# proj = get_module(block, f'attention.output.dense')
# new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
# proj.bias is not None, proj.weight.device)
# new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
# if proj.bias is not None:
# new_proj.bias.data.copy_(proj.bias.data)
# set_module(block, f'attention.output.dense', new_proj)
# fc1 = get_module(block, f'intermediate.dense')
# new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features),
# fc1.bias is not None, fc1.weight.device)
# indexes = l1_max_indexes(fc1.weight.data, 0)
# new_fc1.weight.data.copy_(fc1.weight.data[indexes])
# if fc1.bias is not None:
# new_fc1.bias.data.copy_(fc1.bias.data[indexes])
# set_module(block, f'intermediate.dense', new_fc1)
# fc2 = get_module(block, f'output.dense')
# new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features,
# fc2.bias is not None, fc2.weight.device)
# new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
# if fc2.bias is not None:
# new_fc2.bias.data.copy_(fc2.bias.data)
# set_module(block, f'output.dense', new_fc2)
# for block_i, block in enumerate(fm_vis.text_encoder.encoder.layer):
# for k in ['query', 'key', 'value']:
# qkv = get_module(block, f'crossattention.self.{k}')
# new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
# qkv.bias is not None, qkv.weight.device)
# indexes = l1_max_indexes(qkv.weight.data, 0)
# new_qkv.weight.data.copy_(qkv.weight.data[indexes])
# if qkv.bias is not None:
# new_qkv.bias.data.copy_(qkv.bias.data[indexes])
# set_module(block, f'crossattention.self.{k}', new_qkv)
# proj = get_module(block, f'crossattention.output.dense')
# new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
# proj.bias is not None, proj.weight.device)
# new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
# if proj.bias is not None:
# new_proj.bias.data.copy_(proj.bias.data)
# set_module(block, f'crossattention.output.dense', new_proj)
# for block_i, block in enumerate(fm_vis.vision_model.encoder.layers):
# qkv = block.self_attn.qkv
# new_qkv = nn.Linear(qkv.in_features, _f(qkv.out_features),
# qkv.bias is not None, qkv.weight.device)
# indexes = l1_max_indexes(qkv.weight.data, 0)
# new_qkv.weight.data.copy_(qkv.weight.data[indexes])
# if qkv.bias is not None:
# new_qkv.bias.data.copy_(qkv.bias.data[indexes])
# set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.self_attn.qkv', new_qkv)
# proj = block.self_attn.projection
# new_proj = nn.Linear(_f(proj.in_features), proj.out_features,
# proj.bias is not None, proj.weight.device)
# new_proj.weight.data.copy_(proj.weight.data[:, l1_max_indexes(proj.weight.data, 1)])
# if proj.bias is not None:
# new_proj.bias.data.copy_(proj.bias.data)
# set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.self_attn.projection', new_proj)
# fc1 = block.mlp.fc1
# new_fc1 = nn.Linear(fc1.in_features, _f(fc1.out_features),
# fc1.bias is not None, fc1.weight.device)
# indexes = l1_max_indexes(fc1.weight.data, 0)
# new_fc1.weight.data.copy_(fc1.weight.data[indexes])
# if fc1.bias is not None:
# new_fc1.bias.data.copy_(fc1.bias.data[indexes])
# set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.mlp.fc1', new_fc1)
# fc2 = block.mlp.fc2
# new_fc2 = nn.Linear(_f(fc2.in_features), fc2.out_features,
# fc2.bias is not None, fc2.weight.device)
# new_fc2.weight.data.copy_(fc2.weight.data[:, l1_max_indexes(fc2.weight.data, 1)])
# if fc2.bias is not None:
# new_fc2.bias.data.copy_(fc2.bias.data)
# set_module(fm_vis, f'vision_model.encoder.layers.{block_i}.mlp.fc2', new_fc2)
return fm_vis
def init_md_from_fm_by_reducing_width_with_perf_test(self, fm: nn.Module, reducing_width_ratio: int,
samples: torch.Tensor) -> nn.Module:
fm_size = get_model_size(fm, True)
fm_latency = self._get_model_latency(fm, samples, 20,
get_model_device(fm), 20, False)
master_dnn = self.init_md_from_fm_by_reducing_width(fm, reducing_width_ratio)
master_dnn_size = get_model_size(master_dnn, True)
logger.debug(f'inited master DNN: {master_dnn}')
master_dnn_latency = self._get_model_latency(master_dnn, samples, 20,
get_model_device(master_dnn), 20, False)
logger.info(f'init master DNN (w/o FBS yet) by reducing foundation model\'s width (by {reducing_width_ratio:d}x)')
logger.info(f'foundation model ({fm_size:.3f}MB, {fm_latency:.4f}s/sample) -> '
f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample)\n'
f'(model size: ↓ {(fm_size / master_dnn_size):.2f}x, '
f'latency: ↓ {(fm_latency / master_dnn_latency):.2f}x)')
return master_dnn
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
if isinstance(model_input_size, tuple):
dummy_input = torch.rand(model_input_size).to(device)
else:
dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(dummy_input)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(dummy_input)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**dummy_input)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time
####Here starts with index
class SqueezeLast(nn.Module):
def __init__(self):
super(SqueezeLast, self).__init__()
def forward(self, x):
return x.squeeze(-1)
class ProjConv_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, proj: nn.Conv2d, r):
super(ProjConv_WrappedWithFBS, self).__init__()
self.proj = proj
# for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
# for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
self.fbs = nn.Sequential(
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(proj.in_channels, proj.out_channels // r),
nn.ReLU(),
nn.Linear(proj.out_channels // r, proj.out_channels),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
raw_res = self.proj(x)
return channel_attention.unsqueeze(1) * raw_res # TODO:
class Linear_WrappedWithFBS(Layer_WrappedWithFBS):
def __init__(self, linear: nn.Linear, r):
super(Linear_WrappedWithFBS, self).__init__()
self.linear = linear
# for conv: (B, C_in, H, W) -> (B, C_in) -> (B, C_out)
# for mlp in ViT: (B, #patches, D: dim of patches embedding) -> (B, D) -> (B, C_out)
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(linear.in_features, linear.out_features // r),
nn.ReLU(),
nn.Linear(linear.out_features // r, linear.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
channel_attention = self.cached_channel_attention
raw_res = self.linear(x)
return channel_attention.unsqueeze(1) * raw_res
class ToQKV_WrappedWithFBS(Layer_WrappedWithFBS):
"""
This regards to_q/to_k/to_v as a whole (in fact it consists of multiple heads) and prunes it.
It seems different channels of different heads are pruned according to the input.
This is different from "removing some head" or "removing the same channels in each head".
"""
def __init__(self, to_qkv: nn.Linear, r):
super(ToQKV_WrappedWithFBS, self).__init__()
# self.to_qkv = to_qkv
self.to_qk = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 * 2, bias=to_qkv.bias is not None)
self.to_v = nn.Linear(to_qkv.in_features, to_qkv.out_features // 3, bias=to_qkv.bias is not None)
self.to_qk.weight.data.copy_(to_qkv.weight.data[0: to_qkv.out_features // 3 * 2])
if to_qkv.bias is not None:
self.to_qk.bias.data.copy_(to_qkv.bias.data[0: to_qkv.out_features // 3 * 2])
self.to_v.weight.data.copy_(to_qkv.weight.data[to_qkv.out_features // 3 * 2: ])
if to_qkv.bias is not None:
self.to_v.bias.data.copy_(to_qkv.bias.data[to_qkv.out_features // 3 * 2: ])
self.fbs = nn.Sequential(
Rearrange('b n d -> b d n'),
Abs(),
nn.AdaptiveAvgPool1d(1),
SqueezeLast(),
nn.Linear(to_qkv.in_features, to_qkv.out_features // 3 // r),
nn.ReLU(),
# nn.Linear(to_qkv.out_features // 3 // r, to_qkv.out_features // 3),
nn.Linear(to_qkv.out_features // 3 // r, self.to_v.out_features),
nn.ReLU()
)
nn.init.constant_(self.fbs[6].bias, 1.)
nn.init.kaiming_normal_(self.fbs[6].weight)
def forward(self, x):
if self.use_cached_channel_attention and self.cached_channel_attention is not None:
channel_attention = self.cached_channel_attention
else:
self.cached_raw_channel_attention = self.fbs(x)
# print()
# for attn in self.cached_raw_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_raw_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
self.cached_channel_attention = self.k_takes_all(self.cached_raw_channel_attention)
# for attn in self.cached_channel_attention.chunk(3, dim=1)[0: 1]:
# print(self.cached_channel_attention.size(), attn.size())
# print(self.k_takes_all.k)
# print(attn[0].nonzero(as_tuple=True)[0].size(), attn[0])
# print()
channel_attention = self.cached_channel_attention
qk = self.to_qk(x)
v = channel_attention.unsqueeze(1) * self.to_v(x)
return torch.cat([qk, v], dim=-1)
# qkv = raw_res.chunk(3, dim = -1)
# raw_v = qkv[2]
# print('raw_k, raw_v', qkv[0].sum((0, 1))[0: 10], qkv[0].sum((0, 1)).nonzero(as_tuple=True)[0].size(),
# qkv[1].sum((0, 1))[0: 10], qkv[1].sum((0, 1)).nonzero(as_tuple=True)[0].size(),)
# print('raw_v', raw_v.size(), raw_v.sum((0, 1))[0: 10], raw_v.sum((0, 1)).nonzero(as_tuple=True)[0].size())
# qkv_attn = channel_attention.chunk(3, dim=-1)
# print('attn', [attn[0][0: 10] for attn in qkv_attn])
# print(channel_attention.unsqueeze(1).size(), raw_res.size())
# print('fbs', channel_attention.size(), raw_res.size())
# return channel_attention.unsqueeze(1) * raw_res
class StaticFBS(nn.Module):
def __init__(self, static_channel_attention):
super(StaticFBS, self).__init__()
assert static_channel_attention.dim() == 2 and static_channel_attention.size(0) == 1
self.static_channel_attention = nn.Parameter(static_channel_attention, requires_grad=False) # (1, dim)
def forward(self, x):
# print('staticfbs', x, self.static_channel_attention.unsqueeze(1))
return x * self.static_channel_attention.unsqueeze(1)
class ElasticbeitUtil(ElasticDNNUtil):
def convert_raw_dnn_to_master_dnn(self, raw_dnn: nn.Module, r: float, ignore_layers=[]):
assert len(ignore_layers) == 0, 'not supported yet'
raw_vit = deepcopy(raw_dnn)
# set_module(module, 'patch_embed.proj', ProjConv_WrappedWithFBS(module.patch_embed.proj, r))
for name, module in raw_vit.named_modules():
# if name.endswith('attn'):
# set_module(module, 'qkv', ToQKV_WrappedWithFBS(module.qkv, r))
if name.endswith('intermediate'):
set_module(module, 'dense', Linear_WrappedWithFBS(module.dense, r))
elif name.endswith('mlp'):
set_module(module, 'fc1', Linear_WrappedWithFBS(module.fc1, r))
return raw_vit
def set_master_dnn_sparsity(self, master_dnn: nn.Module, sparsity: float):
# for name, module in master_dnn.named_modules():
# if not name.endswith('attn'):
# continue
# q_features = module.qkv.to_qk.out_features // 2
# if (q_features - int(q_features * sparsity)) % module.num_heads != 0:
# # tune sparsity to ensure #unpruned channel % num_heads == 0
# # so that the pruning seems to reduce the dim_head of each head
# tuned_sparsity = 1. - int((q_features - int(q_features * sparsity)) / module.num_heads) * module.num_heads / q_features
# logger.debug(f'tune sparsity from {sparsity:.2f} to {tuned_sparsity}')
# sparsity = tuned_sparsity
# break
return super().set_master_dnn_sparsity(master_dnn, sparsity)
def select_most_rep_sample(self, master_dnn: nn.Module, samples: torch.Tensor):
# print(samples)
return samples[0].unsqueeze(0)
# res = {k: v[0: 1] for k, v in samples.items()}
# return res
def extract_surrogate_dnn_via_samples(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):#产生小模型的步骤
sample = self.select_most_rep_sample(master_dnn, samples)
# assert sample.dim() == 4 and sample.size(0) == 1
# print('before')
master_dnn.eval()
self.clear_cached_channel_attention_in_master_dnn(master_dnn)
with torch.no_grad():
master_dnn_output = master_dnn(sample)
# print('after')
boosted_vit = deepcopy(master_dnn)
def get_unpruned_indexes_from_channel_attn(channel_attn: torch.Tensor, k):
assert channel_attn.size(0) == 1, 'use A representative sample to generate channel attentions'
# print('attn_in_unpruned', channel_attn[0][0: 10])
res = channel_attn[0].nonzero(as_tuple=True)[0] # should be one-dim
# res = channel_attn[0].argsort(descending=True)[0: -int(channel_attn.size(1) * k)].sort()[0]
# g = channel_attn
# k = g.size(1) - int(g.size(1) * k)
# res = g.topk(k, 1)[1][0].sort()[0]
return res
unpruned_indexes_of_layers = {}
# for attn, ff in boosted_vit.transformer.layers:
# for block_i, block in enumerate(boosted_vit.blocks):
for block_i, block in enumerate(boosted_vit.beit.encoder.layer):
# attn = block.attn
# ff = block.mlp
ff_0 = get_module(block, f'intermediate.dense')
# ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
if ff_0.linear.bias is not None:
new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
ff_1 = get_module(block, f'output.dense')
new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
if ff_1.bias is not None:
new_ff_1.bias.data.copy_(ff_1.bias.data)
set_module(block, 'output.dense', new_ff_1)
unpruned_indexes_of_layers[f'beit.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
# for block_i,block in enumerate(boosted_vit.vision_model.encoder.layers):
# attn = block.self_attn
# ff = block.mlp
# ff_0 = ff.fc1
# # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
# ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
# ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
# new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
# new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
# if ff_0.linear.bias is not None:
# new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
# set_module(ff, 'fc1', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
# ff_1 = ff.fc2
# new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
# new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
# if ff_1.bias is not None:
# new_ff_1.bias.data.copy_(ff_1.bias.data)
# set_module(ff, 'fc2', new_ff_1)
# unpruned_indexes_of_layers[f'vision_model.encoder.layers.{block_i}.mlp.fc1.0.weight'] = ff_0_unpruned_indexes
# for block_i, block in enumerate(boosted_vit.text_decoder.bert.encoder.layer):
# # attn = block.attn
# # ff = block.mlp
# ff_0 = get_module(block, f'intermediate.dense')
# # ff_0_unpruned_indexes = get_unpruned_indexes_from_channel_attn(ff_0.cached_channel_attention, k)
# ff_0_pruned_indexes = ff_0.k_takes_all.cached_i[0].sort()[0]
# ff_0_unpruned_indexes = torch.LongTensor([ii for ii in range(ff_0.cached_channel_attention.size(1)) if ii not in ff_0_pruned_indexes])
# new_ff_0 = nn.Linear(ff_0.linear.in_features, ff_0_unpruned_indexes.size(0), ff_0.linear.bias is not None)
# new_ff_0.weight.data.copy_(ff_0.linear.weight.data[ff_0_unpruned_indexes])
# if ff_0.linear.bias is not None:
# new_ff_0.bias.data.copy_(ff_0.linear.bias.data[ff_0_unpruned_indexes])
# set_module(block, 'intermediate.dense', nn.Sequential(new_ff_0, StaticFBS(ff_0.cached_channel_attention[:, ff_0_unpruned_indexes])))
# ff_1 = get_module(block, f'output.dense')
# new_ff_1 = nn.Linear(ff_0_unpruned_indexes.size(0), ff_1.out_features, ff_1.bias is not None)
# new_ff_1.weight.data.copy_(ff_1.weight.data[:, ff_0_unpruned_indexes])
# if ff_1.bias is not None:
# new_ff_1.bias.data.copy_(ff_1.bias.data)
# set_module(block, 'output.dense', new_ff_1)
# unpruned_indexes_of_layers[f'text_decoder.bert.encoder.layer.{block_i}.intermediate.dense.0.weight'] = ff_0_unpruned_indexes
surrogate_dnn = boosted_vit
surrogate_dnn.eval()
surrogate_dnn = surrogate_dnn.to(get_model_device(master_dnn))
# logger.debug(surrogate_dnn)
with torch.no_grad():
surrogate_dnn_output = surrogate_dnn(sample)
output_diff = ((surrogate_dnn_output.logits - master_dnn_output.logits) ** 2).sum()
# assert output_diff < 1e-4, output_diff
logger.info(f'output diff of master and surrogate DNN: {output_diff}')
# logger.debug(f'example output of master/surrogate: {master_dnn_output.sum(0)[0: 10]}, {surrogate_dnn_output.sum(0)[0: 10]}')
# logger.info(f'\nonly prune mlp!!!!\n')
# logger.info(f'\nonly prune mlp!!!!\n')
if return_detail:
return boosted_vit, unpruned_indexes_of_layers
return boosted_vit
def extract_surrogate_dnn_via_samples_with_perf_test(self, master_dnn: nn.Module, samples: torch.Tensor, return_detail=False):
master_dnn_size = get_model_size(master_dnn, True)
master_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
res = self.extract_surrogate_dnn_via_samples(master_dnn, samples, return_detail)
if not return_detail:
surrogate_dnn = res
else:
surrogate_dnn, unpruned_indexes_of_layers = res
surrogate_dnn_size = get_model_size(surrogate_dnn, True)
surrogate_dnn_latency = self._get_model_latency(master_dnn, samples, 50,
get_model_device(master_dnn), 50, False)
logger.info(f'master DNN ({master_dnn_size:.3f}MB, {master_dnn_latency:.4f}s/sample) -> '
f'surrogate DNN ({surrogate_dnn_size:.3f}MB, {surrogate_dnn_latency:.4f}s/sample)\n'
f'(model size: ↓ {(master_dnn_size / surrogate_dnn_size):.2f}x, '
f'latency: ↓ {(master_dnn_latency / surrogate_dnn_latency):.2f}x)')
return res
def _get_model_latency(self, model: torch.nn.Module, model_input_size, sample_num: int,
device: str, warmup_sample_num: int, return_detail=False):
import time
if isinstance(model_input_size, tuple):
dummy_input = torch.rand(model_input_size).to(device)
else:
dummy_input = model_input_size
model = model.to(device)
model.eval()
# warm up
with torch.no_grad():
for _ in range(warmup_sample_num):
model(dummy_input)
infer_time_list = []
if device == 'cuda' or 'cuda' in str(device):
with torch.no_grad():
for _ in range(sample_num):
s, e = torch.cuda.Event(enable_timing=True), torch.cuda.Event(enable_timing=True)
s.record()
model(dummy_input)
e.record()
torch.cuda.synchronize()
cur_model_infer_time = s.elapsed_time(e) / 1000.
infer_time_list += [cur_model_infer_time]
else:
with torch.no_grad():
for _ in range(sample_num):
start = time.time()
model(**dummy_input)
cur_model_infer_time = time.time() - start
infer_time_list += [cur_model_infer_time]
avg_infer_time = sum(infer_time_list) / sample_num
if return_detail:
return avg_infer_time, infer_time_list
return avg_infer_time
#####Here starts with online