EdgeTA / methods /elasticdnn /api /algs /md_pretraining_index.py
LINC-BIT's picture
Upload 1912 files
b84549f verified
from typing import Any, Dict
from schema import Schema, Or
import schema
from data import Scenario, MergedDataset
from methods.base.alg import BaseAlg
from data import build_dataloader
from ..model import ElasticDNN_OfflineFMModel, ElasticDNN_OfflineMDModel
from ...model.base import ElasticDNNUtil
import torch.optim
import tqdm
import torch.nn.functional as F
from torch import nn
from utils.dl.common.env import create_tbwriter
import os
import random
import numpy as np
from copy import deepcopy
from utils.dl.common.model import LayerActivation, get_module
from utils.common.log import logger
import matplotlib.pyplot as plt
class ElasticDNN_MDPretrainingIndexAlg(BaseAlg):
"""
construct indexes between a filter/row of MD and all filters/rows of FM in the same layer
too huge indexes (~1GB), train so slow, hard to optimize
"""
def get_required_models_schema(self) -> Schema:
return Schema({
'fm': ElasticDNN_OfflineFMModel,
'md': ElasticDNN_OfflineMDModel
})
def get_required_hyp_schema(self) -> Schema:
return Schema({
'launch_tbboard': bool,
'samples_size': (int, int, int, int),
'train_batch_size': int,
'val_batch_size': int,
'num_workers': int,
'optimizer': str,
'indexes_optimizer_args': dict,
'scheduler': str,
'scheduler_args': dict,
'num_iters': int,
'val_freq': int,
'index_loss_l1_weight': float,
'val_num_sparsities': int,
'bn_cal_num_iters': int,
'index_guided_linear_comb_split_size': Or(int, None)
})
def upsample_2d_tensor(self, p: torch.Tensor, target_len: int):
assert p.dim() == 2 # regard 2d weight as (batch_size, 1d_vector_dim)
return F.upsample(p.unsqueeze(1).unsqueeze(3),
size=(target_len, 1),
mode='bilinear').squeeze(3).squeeze(1)
def two_params_diff_fast(self, trained_p: torch.Tensor, ref_p: torch.Tensor,
index: torch.Tensor,
split_size: int):
assert trained_p.dim() == ref_p.dim()
assert index.size(0) == trained_p.size(0) and index.size(1) == ref_p.size(0)
# print(trained_p.size(), ref_p.size(), index.size())
ref_p = ref_p.detach()
if trained_p.dim() > 1:
trained_p = trained_p.flatten(1)
ref_p = ref_p.flatten(1)
# the weight size of master DNN and foundation model may be totally different
# MD -> FM: upsample first
# FM -> MD: downsample first
if trained_p.size(1) < ref_p.size(1):
trained_p = self.upsample_2d_tensor(trained_p, ref_p.size(1))
index = index.unsqueeze(-1)
# linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
# else:
# print(trained_p.size(), ref_p.size(), index.size())
if split_size is None:
# old version: huge memory consumption, not recommended (although this is fastest)
# print('old version')
linear_combed_ref_p = (ref_p.unsqueeze(0) * index).sum(1)
else:
# new version
linear_combed_ref_p = 0
cur_split_size = split_size
while index.size(1) % cur_split_size != 0:
cur_split_size -= 1
# print(cur_split_size)
for i in range(0, index.size(1), cur_split_size):
# if not isinstance(linear_combed_ref_p, int):
# print(linear_combed_ref_p.size(), ref_p.unsqueeze(0)[:, i: i + cur_split_size].size(), index[:, i: i + cur_split_size].size())
linear_combed_ref_p += ref_p.unsqueeze(0)[:, i: i + cur_split_size] * index[:, i: i + cur_split_size]
linear_combed_ref_p = linear_combed_ref_p.sum(1)
diff = (linear_combed_ref_p - trained_p).norm(2) ** 2
return diff
def get_index_loss(self, fm, md, indexes, match_fn, split_size):
res = 0.
for name, p in md.named_parameters():
if name not in indexes.keys():
continue
# if p.dim() == 0:
# continue
raw_p = match_fn(name, fm)
# if raw_p is None:
# continue
index = indexes[name]
# print(name)
res += self.two_params_diff_fast(p, raw_p, index, split_size)
return res
def bn_cal(self, model: nn.Module, train_loader, num_iters, device):
has_bn = False
for n, m in model.named_modules():
if isinstance(m, nn.BatchNorm2d):
has_bn = True
break
if not has_bn:
return {}
def bn_calibration_init(m):
""" calculating post-statistics of batch normalization """
if getattr(m, 'track_running_stats', False):
# reset all values for post-statistics
m.reset_running_stats()
# set bn in training mode to update post-statistics
m.training = True
with torch.no_grad():
model.eval()
model.apply(bn_calibration_init)
for _ in range(num_iters):
x, _ = next(train_loader)
model(x.to(device))
model.eval()
bn_stats = {}
for n, m in model.named_modules():
if isinstance(m, nn.BatchNorm2d):
bn_stats[n] = m
return bn_stats
def run(self, scenario: Scenario, hyps: Dict) -> Dict[str, Any]:
super().run(scenario, hyps)
# sanity check
# a= torch.tensor([[1, 2, 3], [1, 2, 4]])
# index = torch.tensor([[1, 2, 3],
# [1, 2, 4]])
# b = torch.tensor([[1, 2, 3], [1, 2, 4], [2, 3, 4]])
# print(self.two_params_diff_fast(a, b, index, hyps['index_guided_linear_comb_split_size']))
assert isinstance(self.models['md'], ElasticDNN_OfflineMDModel) # for auto completion
assert isinstance(self.models['fm'], ElasticDNN_OfflineFMModel) # for auto completion
# 1. add FBS
device = self.models['md'].device
# logger.info(f'init master DNN by reducing width of an adapted foundation model (already tuned by LoRA)...')
# before_fm_model = deepcopy(self.models['fm'].models_dict['main'])
# lora_util = self.models['fm'].get_lora_util()
# lora_absorbed_fm_model = lora_util.absorb_lora_and_recover_net_structure(self.models['fm'].models_dict['main'],
# torch.rand(hyps['samples_size']).to(device))
# self.models['fm'].models_dict['main'] = lora_absorbed_fm_model
# master_dnn = self.models['fm'].generate_md_by_reducing_width(hyps['generate_md_width_ratio'],
# torch.rand(hyps['samples_size']).to(device))
# self.models['fm'].models_dict['main'] = before_fm_model
elastic_dnn_util = self.models['fm'].get_elastic_dnn_util()
# master_dnn = elastic_dnn_util.convert_raw_dnn_to_master_dnn_with_perf_test(master_dnn,
# hyps['FBS_r'], hyps['FBS_ignore_layers'])
# self.models['md'].models_dict['main'] = master_dnn
# self.models['md'].to(device)
# master_dnn = self.models['md'].models_dict['main']
# 2. train (knowledge distillation, index relationship)
offline_datasets = scenario.get_offline_datasets()
train_dataset = MergedDataset([d['train'] for d in offline_datasets.values()])
val_dataset = MergedDataset([d['val'] for d in offline_datasets.values()])
train_loader = iter(build_dataloader(train_dataset, hyps['train_batch_size'], hyps['num_workers'],
True, None))
val_loader = build_dataloader(val_dataset, hyps['val_batch_size'], hyps['num_workers'],
False, False)
# 2.1 train only FBS (skipped because current md cannot do proper inference)
# 2.2 train whole master DNN (knowledge distillation, index relationship)
# for p in master_dnn.parameters():
# p.requires_grad = True
# self.models['md'].to_train_mode()
indexes = {}
for name, p in self.models['md'].models_dict['main'].named_parameters():
if p.dim() > 1:
matched_p_in_fm = self.models['md'].get_matched_param_of_fm(name, self.models['fm'].models_dict['main'])
if matched_p_in_fm is None:
continue
indexes[name] = torch.zeros((p.size(0), matched_p_in_fm.size(0))).to(device)
indexes[name].requires_grad = True
logger.info(f'construct index in layer {name}')
tmp_indexes_file_path = os.path.join(self.res_save_dir, 'tmp-indexes.pt')
torch.save(indexes, tmp_indexes_file_path)
logger.info(f'generate indexes ({(os.path.getsize(tmp_indexes_file_path) / 1024**2):.3f}MB)')
os.remove(tmp_indexes_file_path)
optimizer = torch.optim.__dict__[hyps['optimizer']]([
# {'params': self.models['md'].models_dict['main'].parameters(), **hyps['optimizer_args']},
{'params': [v for v in indexes.values()], **hyps['indexes_optimizer_args']}
])
scheduler = torch.optim.lr_scheduler.__dict__[hyps['scheduler']](optimizer, **hyps['scheduler_args'])
tb_writer = create_tbwriter(os.path.join(self.res_save_dir, 'tb_log'), launch_tbboard=hyps['launch_tbboard'])
pbar = tqdm.tqdm(range(hyps['num_iters']), dynamic_ncols=True)
best_avg_val_acc = 0.
for p in self.models['md'].models_dict['main'].parameters():
p.requires_grad = False
for p in self.models['fm'].models_dict['main'].parameters():
p.requires_grad = False
for iter_index in pbar:
self.models['md'].to_eval_mode()
self.models['fm'].to_eval_mode()
# rand_sparsity = random.random() * (hyps['max_sparsity'] - hyps['min_sparsity']) + hyps['min_sparsity']
# elastic_dnn_util.set_master_dnn_sparsity(self.models['md'].models_dict['main'], rand_sparsity)
# x, y = next(train_loader)
# x, y = x.to(device), y.to(device)
# task_loss = self.models['md'].forward_to_get_task_loss(x, y)
# l1_reg_loss = hyps['l1_reg_loss_weight'] * elastic_dnn_util.get_accu_l1_reg_of_raw_channel_attention_in_master_dnn(master_dnn)
index_loss = self.get_index_loss(self.models['fm'].models_dict['main'],
self.models['md'].models_dict['main'],
indexes,
self.models['md'].get_matched_param_of_fm,
hyps['index_guided_linear_comb_split_size'])
index_l1_loss = hyps['index_loss_l1_weight'] * torch.FloatTensor([v.abs().sum() for v in indexes.values()]).sum()
total_loss = index_loss + index_l1_loss
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
scheduler.step()
if (iter_index + 1) % (10) == 0:
# visualize indexes histgoram
# do not use add_histogram because indexes is huge
os.makedirs(os.path.join(self.res_save_dir, 'index_hist'), exist_ok=True)
with torch.no_grad():
for p_name, index in indexes.items():
index_hist = index.view(-1).histc(bins=20).detach().cpu().numpy()
plt.bar(list(range(20)), index_hist)
plt.savefig(os.path.join(self.res_save_dir, f'index_hist/{p_name}.png'))
plt.clf()
if (iter_index + 1) % hyps['val_freq'] == 0:
elastic_dnn_util.clear_cached_channel_attention_in_master_dnn(self.models['md'].models_dict['main'])
cur_md = self.models['md'].models_dict['main']
md_for_test = deepcopy(self.models['md'].models_dict['main'])
val_accs = {}
avg_val_acc = 0.
bn_stats = {}
for val_sparsity in [0.0, 0.2, 0.4, 0.8]:
elastic_dnn_util.set_master_dnn_sparsity(md_for_test, val_sparsity)
bn_stats[f'{val_sparsity:.4f}'] = self.bn_cal(md_for_test, train_loader, hyps['bn_cal_num_iters'], device)
self.models['md'].models_dict['main'] = md_for_test
self.models['md'].to_eval_mode()
val_acc = self.models['md'].get_accuracy(val_loader)
val_accs[f'{val_sparsity:.4f}'] = val_acc
avg_val_acc += val_acc
avg_val_acc /= hyps['val_num_sparsities']
self.models['md'].models_dict['main'] = cur_md
self.models['md'].models_dict['indexes'] = indexes
self.models['md'].models_dict['bn_stats'] = bn_stats
self.models['fm'].models_dict['indexes'] = indexes
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_last.pt'))
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_last.pt'))
if avg_val_acc > best_avg_val_acc:
best_avg_val_acc = avg_val_acc
self.models['md'].save_model(os.path.join(self.res_save_dir, 'models/md_best.pt'))
self.models['fm'].save_model(os.path.join(self.res_save_dir, 'models/fm_best.pt'))
tb_writer.add_scalars(f'losses', dict(index=index_loss, index_l1=index_l1_loss, total=total_loss), iter_index)
pbar.set_description(f'loss: {total_loss:.6f}, index_loss: {index_loss:.6f}, index_l1_loss: {index_l1_loss:.6f}')
if (iter_index + 1) >= hyps['val_freq']:
tb_writer.add_scalars(f'accs/val_accs', val_accs, iter_index)
tb_writer.add_scalar(f'accs/avg_val_acc', avg_val_acc, iter_index)
pbar.set_description(f'loss: {total_loss:.6f}, index_loss: {index_loss:.6f}, index_l1_loss: {index_l1_loss:.6f}, '
f'avg_val_acc: {avg_val_acc:.4f}')