import streamlit as st import pandas as pd import pickle import lime import lime.lime_tabular import streamlit.components.v1 as components # Load your trained model with open('model.pkl', 'rb') as file: model = pickle.load(file) obesity_mapping = { 0: 'Normal', 1: 'Surpoid/Obése' } # Define the input features for the user to input def user_input_features(): age = st.number_input('Age:',min_value=8, max_value=100, value=24, step=1, format="%d") classe = st.radio('Classe_', ('Primaire','Secondaire')) Zone = st.radio('zone', ('Rurale', 'Urbaine')) Diversité = st.radio('Consumption of food between meals (CAEC)', ('Mauvaise', 'Bonne')) Region = st.selectbox( 'Region de ', ('Nord_ouest' ,'Sud_ouest', '1Ouest') ) Sexe = st.radio('Genre', ('F', 'M')) Zone = 1 if Zone == 'Rurale' else 0 classe = 1 if classe == 'Primaire' else 0 Diversité = 1 if Diversité == 'Mauvaise' else 0 Region = ['Nord_ouest' ,'Sud_ouest', '1Ouest'].index(Region) sex_f = 1 if Sexe == 'F' else 0 sex_m = 1 if Sexe == 'M' else 0 data = { 'Region': Region, 'Zone': Zone, 'Classe': classe, 'Age': age, 'Diversité': Diversité, 'Genre_F': sex_f, 'Genre_M': sex_m } features = pd.DataFrame(data, index=[0]) return features st.title('Obesity App') # Display the input fields input_df = user_input_features() # Initialiser LIME explainer = lime.lime_tabular.LimeTabularExplainer( training_data=input_df.values, # Entraînement sur la base des données d'entrée feature_names=input_df.columns, class_names=[obesity_mapping[0], obesity_mapping[1]], mode='classification' ) # Predict button if st.button('Predict'): # Make a prediction prediction = model.predict(input_df) prediction_proba = model.predict_proba(input_df)[0] data = { 'Obesity Type': [obesity_mapping[i] for i in range(len(prediction_proba))], 'Probability': prediction_proba } # Create a dataframe to display the results result_df = pd.DataFrame(data) # Transpose the dataframe to have obesity types as columns and add a row header result_df = result_df.T result_df.columns = result_df.iloc[0] result_df = result_df.drop(result_df.index[0]) result_df.index = ['Probability'] # Display the results in a table with proper formatting st.table(result_df.style.format("{:.4f}")) # Générer l'explication LIME pour l'individu # exp = explainer.explain_instance(input_df.values[0], model.predict_proba, num_features=5) # # Afficher les explications dans Streamlit # st.subheader('Explication LIME') # exp.show_in_notebook(show_table=True, show_all=False) # st.write(exp.as_list()) # Générer l'explication LIME pour l'individu exp = explainer.explain_instance(input_df.values[0], model.predict_proba, num_features=4) # Récupérer l'explication LIME sous forme HTML explanation_html = exp.as_html() # Afficher l'explication LIME dans Streamlit st.subheader('Explication LIME') # Utiliser Streamlit pour afficher du HTML components.html(explanation_html, height=800) # Ajuster la hauteur selon le contenu