File size: 27,956 Bytes
031b7fd 76c7911 3a41d39 031b7fd f018f5c 031b7fd 7d23a3a 46e05e5 6c1f474 031b7fd 3a41d39 862da2c 031b7fd 329d7c6 9113900 329d7c6 031b7fd e15f306 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 3a41d39 be967ac 3a41d39 031b7fd 2ecfccf 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 3a41d39 031b7fd 329d7c6 3a41d39 a229345 031b7fd 5bf2d81 f0bd71b 52bb28e 031b7fd 5bf2d81 ee75885 5bf2d81 52bb28e 031b7fd af50baa 3fd20ac 11415cb 3fd20ac af50baa d1930e5 af50baa 81ca3d5 05d8202 1975678 af50baa db3bab7 4f3e17b 623f8c9 520b9b9 4f3e17b 685f85b 1e819f6 acf9c3b 4aa7629 623f8c9 db3bab7 623f8c9 edc53f0 13a10f5 6c1f474 f018f5c af50baa 5c4c0ce 52bb28e ebfa7b3 5c4c0ce ebfa7b3 4f3e17b 9d7956a af50baa af0d409 af50baa 2430487 af50baa a3eaf18 f018f5c af50baa 0a28e1d fbd678b 4f3e17b 33f7ad0 4f3e17b efa53b5 33f7ad0 af50baa a45a48d 093e747 df3817a af50baa f2a0349 af50baa c765506 9a58eda af50baa 2ed94c9 031b7fd 0b8a706 031b7fd 0b8a706 031b7fd c2f69b0 031b7fd aa806ad 031b7fd c2f69b0 b3e714e c2f69b0 86f2482 031b7fd 2ecfccf 76c7911 031b7fd ac7a31c 031b7fd e3c663b ac7a31c 031b7fd e3c663b 031b7fd e3c663b 031b7fd 179876d 031b7fd 179876d 031b7fd 179876d 031b7fd 179876d 031b7fd 179876d 031b7fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
import os
import torch
import whisper
import gradio as gr
import torchaudio
from abc import ABC, abstractmethod
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
from faster_whisper.vad import VadOptions
from dataclasses import astuple
import gc
from copy import deepcopy
from modules.uvr.music_separator import MusicSeparator
from modules.utils.paths import (WHISPER_MODELS_DIR, DIARIZATION_MODELS_DIR, OUTPUT_DIR, DEFAULT_PARAMETERS_CONFIG_PATH,
UVR_MODELS_DIR)
from modules.utils.subtitle_manager import get_srt, get_vtt, get_txt, get_plaintext, get_csv, write_file, safe_filename
from modules.utils.youtube_manager import get_ytdata, get_ytaudio
from modules.utils.files_manager import get_media_files, format_gradio_files, load_yaml, save_yaml
from modules.whisper.whisper_parameter import *
from modules.diarize.diarizer import Diarizer
from modules.vad.silero_vad import SileroVAD
from modules.translation.nllb_inference import NLLBInference
from modules.translation.nllb_inference import NLLB_AVAILABLE_LANGS
class WhisperBase(ABC):
def __init__(self,
model_dir: str = WHISPER_MODELS_DIR,
diarization_model_dir: str = DIARIZATION_MODELS_DIR,
uvr_model_dir: str = UVR_MODELS_DIR,
output_dir: str = OUTPUT_DIR,
):
self.model_dir = model_dir
self.output_dir = output_dir
os.makedirs(self.output_dir, exist_ok=True)
os.makedirs(self.model_dir, exist_ok=True)
self.diarizer = Diarizer(
model_dir=diarization_model_dir
)
self.vad = SileroVAD()
self.music_separator = MusicSeparator(
model_dir=uvr_model_dir,
output_dir=os.path.join(output_dir, "UVR")
)
self.model = None
self.current_model_size = None
self.available_models = whisper.available_models()
self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
#self.translatable_models = ["large", "large-v1", "large-v2", "large-v3"]
self.translatable_models = whisper.available_models()
self.device = self.get_device()
self.available_compute_types = ["float16", "float32"]
self.current_compute_type = "float16" if self.device == "cuda" else "float32"
@abstractmethod
def transcribe(self,
audio: Union[str, BinaryIO, np.ndarray],
progress: gr.Progress = gr.Progress(),
*whisper_params,
):
"""Inference whisper model to transcribe"""
pass
@abstractmethod
def update_model(self,
model_size: str,
compute_type: str,
progress: gr.Progress = gr.Progress()
):
"""Initialize whisper model"""
pass
def run(self,
audio: Union[str, BinaryIO, np.ndarray],
progress: gr.Progress = gr.Progress(),
add_timestamp: bool = True,
*whisper_params,
) -> Tuple[List[dict], float]:
"""
Run transcription with conditional pre-processing and post-processing.
The VAD will be performed to remove noise from the audio input in pre-processing, if enabled.
The diarization will be performed in post-processing, if enabled.
Parameters
----------
audio: Union[str, BinaryIO, np.ndarray]
Audio input. This can be file path or binary type.
progress: gr.Progress
Indicator to show progress directly in gradio.
add_timestamp: bool
Whether to add a timestamp at the end of the filename.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
segments_result: List[dict]
list of dicts that includes start, end timestamps and transcribed text
elapsed_time: float
elapsed time for running
"""
start_time = datetime.now()
params = WhisperParameters.as_value(*whisper_params)
# Get the offload params
default_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
whisper_params = default_params["whisper"]
diarization_params = default_params["diarization"]
bool_whisper_enable_offload = whisper_params["enable_offload"]
bool_diarization_enable_offload = diarization_params["enable_offload"]
if params.lang is None:
pass
elif params.lang == "Automatic Detection":
params.lang = None
else:
language_code_dict = {value: key for key, value in whisper.tokenizer.LANGUAGES.items()}
params.lang = language_code_dict[params.lang]
if params.is_bgm_separate:
music, audio, _ = self.music_separator.separate(
audio=audio,
model_name=params.uvr_model_size,
device=params.uvr_device,
segment_size=params.uvr_segment_size,
save_file=params.uvr_save_file,
progress=progress
)
if audio.ndim >= 2:
audio = audio.mean(axis=1)
if self.music_separator.audio_info is None:
origin_sample_rate = 16000
else:
origin_sample_rate = self.music_separator.audio_info.sample_rate
audio = self.resample_audio(audio=audio, original_sample_rate=origin_sample_rate)
if params.uvr_enable_offload:
self.music_separator.offload()
elapsed_time_bgm_sep = datetime.now() - start_time
origin_audio = deepcopy(audio)
if params.vad_filter:
# Explicit value set for float('inf') from gr.Number()
if params.max_speech_duration_s is None or params.max_speech_duration_s >= 9999:
params.max_speech_duration_s = float('inf')
progress(0, desc="Filtering silent parts from audio...")
vad_options = VadOptions(
threshold=params.threshold,
min_speech_duration_ms=params.min_speech_duration_ms,
max_speech_duration_s=params.max_speech_duration_s,
min_silence_duration_ms=params.min_silence_duration_ms,
speech_pad_ms=params.speech_pad_ms
)
vad_processed, speech_chunks = self.vad.run(
audio=audio,
vad_parameters=vad_options,
progress=progress
)
if vad_processed.size > 0:
audio = vad_processed
else:
params.vad_filter = False
result, elapsed_time = self.transcribe(
audio,
progress,
*astuple(params)
)
if bool_whisper_enable_offload:
self.offload()
if params.vad_filter:
restored_result = self.vad.restore_speech_timestamps(
segments=result,
speech_chunks=speech_chunks,
)
if restored_result:
result = restored_result
else:
print("VAD detected no speech segments in the audio.")
if params.is_diarize:
progress(0.99, desc="Diarizing speakers...")
result, elapsed_time_diarization = self.diarizer.run(
audio=origin_audio,
use_auth_token=params.hf_token,
transcribed_result=result,
device=params.diarization_device
)
if bool_diarization_enable_offload:
self.diarizer.offload()
if not result:
print(f"Whisper did not detected any speech segments in the audio.")
result = list()
progress(1.0, desc="Processing done!")
total_elapsed_time = datetime.now() - start_time
return result, elapsed_time
def transcribe_file(self,
files: Optional[List] = None,
input_folder_path: Optional[str] = None,
file_format: str = "SRT",
add_timestamp: bool = True,
translate_output: bool = False,
translate_model: str = "",
target_lang: str = "",
add_timestamp_preview: bool = False,
progress=gr.Progress(),
*whisper_params,
) -> list:
"""
Write subtitle file from Files
Parameters
----------
files: list
List of files to transcribe from gr.Files()
input_folder_path: str
Input folder path to transcribe from gr.Textbox(). If this is provided, `files` will be ignored and
this will be used instead.
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
translate_output: bool
Translate output
translate_model: str
Translation model to use
target_lang: str
Target language to use
add_timestamp_preview: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp to output preview
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
if input_folder_path:
files = get_media_files(input_folder_path)
if isinstance(files, str):
files = [files]
if files and isinstance(files[0], gr.utils.NamedString):
files = [file.name for file in files]
## Initialization variables & start time
files_info = {}
files_to_download = {}
time_start = datetime.now()
## Load parameters related with whisper
params = WhisperParameters.as_value(*whisper_params)
## Load model to detect language
model = whisper.load_model("base")
for file in files:
## Detect language
mel = whisper.log_mel_spectrogram(whisper.pad_or_trim(whisper.load_audio(file))).to(model.device)
_, probs = model.detect_language(mel)
file_language = ""
file_lang_probs = ""
for key,value in whisper.tokenizer.LANGUAGES.items():
if key == str(max(probs, key=probs.get)):
file_language = value.capitalize()
for key_prob,value_prob in probs.items():
if key == key_prob:
file_lang_probs = str((round(value_prob*100)))
break
break
transcribed_segments, time_for_task = self.run(
file,
progress,
add_timestamp,
*whisper_params,
)
# Define source language
source_lang = file_language
# Translate to English using Whisper built-in functionality
transcription_note = ""
if params.is_translate:
if source_lang != "English":
transcription_note = "To English"
source_lang = "English"
else:
transcription_note = "Already in English"
# Translate the transcribed segments
translation_note = ""
if translate_output:
if source_lang != target_lang:
self.nllb_inf = NLLBInference()
if source_lang in NLLB_AVAILABLE_LANGS.keys():
transcribed_segments = self.nllb_inf.translate_text(
input_list_dict=transcribed_segments,
model_size=translate_model,
src_lang=source_lang,
tgt_lang=target_lang,
speaker_diarization=params.is_diarize
)
translation_note = "To " + target_lang
else:
translation_note = source_lang + " not supported"
else:
translation_note = "Already in " + target_lang
## Get preview
file_name, file_ext = os.path.splitext(os.path.basename(file))
## With or without timestamps
if add_timestamp_preview:
subtitle = get_txt(transcribed_segments)
else:
subtitle = get_plaintext(transcribed_segments)
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "lang": file_language, "lang_prob": file_lang_probs, "input_source_file": (file_name+file_ext), "translation": translation_note, "transcription": transcription_note}
## Add output file as txt
file_name, file_ext = os.path.splitext(os.path.basename(file))
subtitle, file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format="txt",
output_dir=self.output_dir
)
files_to_download[file_name+"_txt"] = {"path": file_path}
## Add output file as srt
file_name, file_ext = os.path.splitext(os.path.basename(file))
subtitle, file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format="srt",
output_dir=self.output_dir
)
files_to_download[file_name+"_srt"] = {"path": file_path}
## Add output file as csv
file_name, file_ext = os.path.splitext(os.path.basename(file))
subtitle, file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format="csv",
output_dir=self.output_dir
)
files_to_download[file_name+"_csv"] = {"path": file_path}
total_result = ""
total_info = ""
total_time = 0
for file_name, info in files_info.items():
total_result += f'{info["subtitle"]}'
total_time += info["time_for_task"]
total_info += f'Media file:\t{info["input_source_file"]}\nLanguage:\t{info["lang"]} (probability {info["lang_prob"]}%)\n'
if params.is_translate:
total_info += f'Translation:\t{info["transcription"]}\n\t⤷ Handled by OpenAI Whisper\n'
if translate_output:
total_info += f'Translation:\t{info["translation"]}\n\t⤷ Handled by Facebook NLLB\n'
time_end = datetime.now()
total_info += f"\nTotal processing time: {self.format_time((time_end-time_start).total_seconds())}"
result_str = total_result.rstrip("\n")
result_file_path = [info['path'] for info in files_to_download.values()]
return [result_str,result_file_path,total_info]
except Exception as e:
print(f"Error transcribing file: {e}")
finally:
self.release_cuda_memory()
def transcribe_mic(self,
mic_audio: str,
file_format: str = "SRT",
add_timestamp: bool = True,
progress=gr.Progress(),
*whisper_params,
) -> list:
"""
Write subtitle file from microphone
Parameters
----------
mic_audio: str
Audio file path from gr.Microphone()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio...")
transcribed_segments, time_for_task = self.run(
mic_audio,
progress,
add_timestamp,
*whisper_params,
)
progress(1, desc="Completed!")
subtitle, result_file_path = self.generate_and_write_file(
file_name="Mic",
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format=file_format,
output_dir=self.output_dir
)
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing file: {e}")
finally:
self.release_cuda_memory()
def transcribe_youtube(self,
youtube_link: str,
file_format: str = "SRT",
add_timestamp: bool = True,
progress=gr.Progress(),
*whisper_params,
) -> list:
"""
Write subtitle file from Youtube
Parameters
----------
youtube_link: str
URL of the Youtube video to transcribe from gr.Textbox()
file_format: str
Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
add_timestamp: bool
Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
progress: gr.Progress
Indicator to show progress directly in gradio.
*whisper_params: tuple
Parameters related with whisper. This will be dealt with "WhisperParameters" data class
Returns
----------
result_str:
Result of transcription to return to gr.Textbox()
result_file_path:
Output file path to return to gr.Files()
"""
try:
progress(0, desc="Loading Audio from Youtube...")
yt = get_ytdata(youtube_link)
audio = get_ytaudio(yt)
transcribed_segments, time_for_task = self.run(
audio,
progress,
add_timestamp,
*whisper_params,
)
progress(1, desc="Completed!")
file_name = safe_filename(yt.title)
subtitle, result_file_path = self.generate_and_write_file(
file_name=file_name,
transcribed_segments=transcribed_segments,
add_timestamp=add_timestamp,
file_format=file_format,
output_dir=self.output_dir
)
result_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
if os.path.exists(audio):
os.remove(audio)
return [result_str, result_file_path]
except Exception as e:
print(f"Error transcribing file: {e}")
finally:
self.release_cuda_memory()
@staticmethod
def generate_and_write_file(file_name: str,
transcribed_segments: list,
add_timestamp: bool,
file_format: str,
output_dir: str
) -> str:
"""
Writes subtitle file
Parameters
----------
file_name: str
Output file name
transcribed_segments: list
Text segments transcribed from audio
add_timestamp: bool
Determines whether to add a timestamp to the end of the filename.
file_format: str
File format to write. Supported formats: [SRT, WebVTT, txt, csv]
output_dir: str
Directory path of the output
Returns
----------
content: str
Result of the transcription
output_path: str
output file path
"""
if add_timestamp:
#timestamp = datetime.now().strftime("%m%d%H%M%S")
timestamp = datetime.now().strftime("%Y%m%d %H%M%S")
output_path = os.path.join(output_dir, f"{file_name} - {timestamp}")
else:
output_path = os.path.join(output_dir, f"{file_name}")
file_format = file_format.strip().lower()
if file_format == "srt":
content = get_srt(transcribed_segments)
output_path += '.srt'
elif file_format == "webvtt":
content = get_vtt(transcribed_segments)
output_path += '.vtt'
elif file_format == "txt":
content = get_txt(transcribed_segments)
output_path += '.txt'
elif file_format == "csv":
content = get_csv(transcribed_segments)
output_path += '.csv'
write_file(content, output_path)
return content, output_path
def offload(self):
"""Offload the model and free up the memory"""
if self.model is not None:
del self.model
self.model = None
if self.device == "cuda":
self.release_cuda_memory()
gc.collect()
@staticmethod
def format_time(elapsed_time: float) -> str:
"""
Get {hours} {minutes} {seconds} time format string
Parameters
----------
elapsed_time: str
Elapsed time for transcription
Returns
----------
Time format string
"""
hours, rem = divmod(elapsed_time, 3600)
minutes, seconds = divmod(rem, 60)
time_str = ""
hours = round(hours)
if hours:
if hours == 1:
time_str += f"{hours} hour "
else:
time_str += f"{hours} hours "
minutes = round(minutes)
if minutes:
if minutes == 1:
time_str += f"{minutes} minute "
else:
time_str += f"{minutes} minutes "
seconds = round(seconds)
if seconds == 1:
time_str += f"{seconds} second"
else:
time_str += f"{seconds} seconds"
return time_str.strip()
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
if not WhisperBase.is_sparse_api_supported():
# Device `SparseMPS` is not supported for now. See : https://github.com/pytorch/pytorch/issues/87886
return "cpu"
return "mps"
else:
return "cpu"
@staticmethod
def is_sparse_api_supported():
if not torch.backends.mps.is_available():
return False
try:
device = torch.device("mps")
sparse_tensor = torch.sparse_coo_tensor(
indices=torch.tensor([[0, 1], [2, 3]]),
values=torch.tensor([1, 2]),
size=(4, 4),
device=device
)
return True
except RuntimeError:
return False
@staticmethod
def release_cuda_memory():
"""Release memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
@staticmethod
def remove_input_files(file_paths: List[str]):
"""Remove gradio cached files"""
if not file_paths:
return
for file_path in file_paths:
if file_path and os.path.exists(file_path):
os.remove(file_path)
@staticmethod
def cache_parameters(
params: WhisperValues,
file_format: str = "SRT",
add_timestamp: bool = True
):
"""Cache parameters to the yaml file"""
cached_params = load_yaml(DEFAULT_PARAMETERS_CONFIG_PATH)
param_to_cache = params.to_dict()
cached_yaml = {**cached_params, **param_to_cache}
cached_yaml["whisper"]["add_timestamp"] = add_timestamp
cached_yaml["whisper"]["file_format"] = file_format
suppress_token = cached_yaml["whisper"].get("suppress_tokens", None)
if suppress_token and isinstance(suppress_token, list):
cached_yaml["whisper"]["suppress_tokens"] = str(suppress_token)
if cached_yaml["whisper"].get("lang", None) is None:
cached_yaml["whisper"]["lang"] = AUTOMATIC_DETECTION.unwrap()
else:
language_dict = whisper.tokenizer.LANGUAGES
cached_yaml["whisper"]["lang"] = language_dict[cached_yaml["whisper"]["lang"]]
if cached_yaml["vad"].get("max_speech_duration_s", float('inf')) == float('inf'):
cached_yaml["vad"]["max_speech_duration_s"] = GRADIO_NONE_NUMBER_MAX
if cached_yaml is not None and cached_yaml:
save_yaml(cached_yaml, DEFAULT_PARAMETERS_CONFIG_PATH)
@staticmethod
def resample_audio(audio: Union[str, np.ndarray],
new_sample_rate: int = 16000,
original_sample_rate: Optional[int] = None,) -> np.ndarray:
"""Resamples audio to 16k sample rate, standard on Whisper model"""
if isinstance(audio, str):
audio, original_sample_rate = torchaudio.load(audio)
else:
if original_sample_rate is None:
raise ValueError("original_sample_rate must be provided when audio is numpy array.")
audio = torch.from_numpy(audio)
resampler = torchaudio.transforms.Resample(orig_freq=original_sample_rate, new_freq=new_sample_rate)
resampled_audio = resampler(audio).numpy()
return resampled_audio
|