# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn


class LayerScale(nn.Module):
    """LayerScale layer.

    Args:
        dim (int): Dimension of input features.
        inplace (bool): inplace: can optionally do the
            operation in-place. Defaults to False.
        data_format (str): The input data format, could be 'channels_last'
             or 'channels_first', representing (B, C, H, W) and
             (B, N, C) format data respectively. Defaults to 'channels_last'.
    """

    def __init__(self,
                 dim: int,
                 inplace: bool = False,
                 data_format: str = 'channels_last'):
        super().__init__()
        assert data_format in ('channels_last', 'channels_first'), \
            "'data_format' could only be channels_last or channels_first."
        self.inplace = inplace
        self.data_format = data_format
        self.weight = nn.Parameter(torch.ones(dim) * 1e-5)

    def forward(self, x):
        if self.data_format == 'channels_first':
            if self.inplace:
                return x.mul_(self.weight.view(-1, 1, 1))
            else:
                return x * self.weight.view(-1, 1, 1)
        return x.mul_(self.weight) if self.inplace else x * self.weight