Spaces:
Runtime error
Runtime error
File size: 22,542 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple, Union
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmengine.model import BaseModule, ModuleList
from mmcls.registry import MODELS
from ..utils import (BEiTAttention, resize_pos_embed,
resize_relative_position_bias_table, to_2tuple)
from .vision_transformer import TransformerEncoderLayer, VisionTransformer
class RelativePositionBias(BaseModule):
"""Relative Position Bias.
This module is copied from
https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py#L209.
Args:
window_size (Sequence[int]): The window size of the relative
position bias.
num_heads (int): The number of head in multi-head attention.
with_cls_token (bool): To indicate the backbone has cls_token or not.
Defaults to True.
"""
def __init__(
self,
window_size: Sequence[int],
num_heads: int,
with_cls_token: bool = True,
) -> None:
super().__init__()
self.window_size = window_size
if with_cls_token:
num_extra_tokens = 3
else:
num_extra_tokens = 0
# cls to token & token to cls & cls to cls
self.num_relative_distance = (2 * window_size[0] - 1) * (
2 * window_size[1] - 1) + num_extra_tokens
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance,
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each
# token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] -\
coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
if with_cls_token:
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1] + 1, ) * 2,
dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(
-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
else:
relative_position_index = torch.zeros(
size=(window_size[0] * window_size[1], ) * 2,
dtype=relative_coords.dtype)
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer('relative_position_index',
relative_position_index)
def forward(self) -> torch.Tensor:
# Wh*Ww,Wh*Ww,nH
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1)
return relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class BEiTTransformerEncoderLayer(TransformerEncoderLayer):
"""Implements one encoder layer in BEiT.
Comparing with conventional ``TransformerEncoderLayer``, this module
adds weights to the shortcut connection. In addition, ``BEiTAttention``
is used to replace the original ``MultiheadAttention`` in
``TransformerEncoderLayer``.
Args:
embed_dims (int): The feature dimension.
num_heads (int): Parallel attention heads.
feedforward_channels (int): The hidden dimension for FFNs.
layer_scale_init_value (float): The initialization value for
the learnable scaling of attention and FFN. 1 means no scaling.
drop_rate (float): Probability of an element to be zeroed
after the feed forward layer. Defaults to 0.
window_size (tuple[int]): The height and width of the window.
Defaults to None.
use_rel_pos_bias (bool): Whether to use unique relative position bias,
if False, use shared relative position bias defined in backbone.
attn_drop_rate (float): The drop out rate for attention layer.
Defaults to 0.0.
drop_path_rate (float): Stochastic depth rate. Default 0.0.
num_fcs (int): The number of fully-connected layers for FFNs.
Defaults to 2.
bias (bool | str): The option to add leanable bias for q, k, v. If bias
is True, it will add leanable bias. If bias is 'qv_bias', it will
only add leanable bias for q, v. If bias is False, it will not add
bias for q, k, v. Default to 'qv_bias'.
act_cfg (dict): The activation config for FFNs.
Defaults to ``dict(type='GELU')``.
norm_cfg (dict): Config dict for normalization layer.
Defaults to dict(type='LN').
attn_cfg (dict): The configuration for the attention layer.
Defaults to an empty dict.
ffn_cfg (dict): The configuration for the ffn layer.
Defaults to ``dict(add_identity=False)``.
init_cfg (dict or List[dict], optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
embed_dims: int,
num_heads: int,
feedforward_channels: int,
layer_scale_init_value: float,
window_size: Tuple[int, int],
use_rel_pos_bias: bool,
drop_rate: float = 0.,
attn_drop_rate: float = 0.,
drop_path_rate: float = 0.,
num_fcs: int = 2,
bias: Union[str, bool] = 'qv_bias',
act_cfg: dict = dict(type='GELU'),
norm_cfg: dict = dict(type='LN'),
attn_cfg: dict = dict(),
ffn_cfg: dict = dict(add_identity=False),
init_cfg: Optional[Union[dict, List[dict]]] = None) -> None:
super().__init__(
embed_dims=embed_dims,
num_heads=num_heads,
feedforward_channels=feedforward_channels,
attn_drop_rate=attn_drop_rate,
drop_path_rate=0.,
drop_rate=0.,
num_fcs=num_fcs,
qkv_bias=bias,
act_cfg=act_cfg,
norm_cfg=norm_cfg,
init_cfg=init_cfg)
attn_cfg = {
'window_size': window_size,
'use_rel_pos_bias': use_rel_pos_bias,
'qk_scale': None,
'embed_dims': embed_dims,
'num_heads': num_heads,
'attn_drop': attn_drop_rate,
'proj_drop': drop_rate,
'bias': bias,
**attn_cfg,
}
self.attn = BEiTAttention(**attn_cfg)
ffn_cfg = {
'embed_dims': embed_dims,
'feedforward_channels': feedforward_channels,
'num_fcs': num_fcs,
'ffn_drop': drop_rate,
'dropout_layer': dict(type='DropPath', drop_prob=drop_path_rate),
'act_cfg': act_cfg,
**ffn_cfg,
}
self.ffn = FFN(**ffn_cfg)
# NOTE: drop path for stochastic depth, we shall see if
# this is better than dropout here
dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate)
self.drop_path = build_dropout(
dropout_layer) if dropout_layer else nn.Identity()
if layer_scale_init_value > 0:
self.gamma_1 = nn.Parameter(
layer_scale_init_value * torch.ones((embed_dims)),
requires_grad=True)
self.gamma_2 = nn.Parameter(
layer_scale_init_value * torch.ones((embed_dims)),
requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x: torch.Tensor,
rel_pos_bias: torch.Tensor) -> torch.Tensor:
if self.gamma_1 is None:
x = x + self.drop_path(
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.ffn(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(
self.norm1(x), rel_pos_bias=rel_pos_bias))
x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x)))
return x
@MODELS.register_module()
class BEiT(VisionTransformer):
"""Backbone for BEiT.
A PyTorch implement of : `BEiT: BERT Pre-Training of Image Transformers
<https://arxiv.org/abs/2106.08254>`_
A PyTorch implement of : `BEiT v2: Masked Image Modeling with
Vector-Quantized Visual Tokenizers <https://arxiv.org/abs/2208.06366>`_
Args:
arch (str | dict): BEiT architecture. If use string, choose from
'base', 'large'. If use dict, it should have below keys:
- **embed_dims** (int): The dimensions of embedding.
- **num_layers** (int): The number of transformer encoder layers.
- **num_heads** (int): The number of heads in attention modules.
- **feedforward_channels** (int): The hidden dimensions in
feedforward modules.
Defaults to 'base'.
img_size (int | tuple): The expected input image shape. Because we
support dynamic input shape, just set the argument to the most
common input image shape. Defaults to 224.
patch_size (int | tuple): The patch size in patch embedding.
Defaults to 16.
in_channels (int): The num of input channels. Defaults to 3.
out_indices (Sequence | int): Output from which stages.
Defaults to -1, means the last stage.
drop_rate (float): Probability of an element to be zeroed.
Defaults to 0.
drop_path_rate (float): stochastic depth rate. Defaults to 0.
qkv_bias (bool): Whether to add bias for qkv in attention modules.
Defaults to True.
norm_cfg (dict): Config dict for normalization layer.
Defaults to ``dict(type='LN')``.
final_norm (bool): Whether to add a additional layer to normalize
final feature map. Defaults to True.
with_cls_token (bool): Whether concatenating class token into image
tokens as transformer input. Defaults to True.
avg_token (bool): Whether or not to use the mean patch token for
classification. If True, the model will only take the average
of all patch tokens. Defaults to False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Defaults to -1.
output_cls_token (bool): Whether output the cls_token. If set True,
``with_cls_token`` must be True. Defaults to True.
use_abs_pos_emb (bool): Use position embedding like vanilla ViT.
Defaults to False.
use_rel_pos_bias (bool): Use relative position embedding in each
transformer encoder layer. Defaults to True.
use_shared_rel_pos_bias (bool): Use shared relative position embedding,
all transformer encoder layers share the same relative position
embedding. Defaults to False.
layer_scale_init_value (float): The initialization value for
the learnable scaling of attention and FFN. Defaults to 0.1.
interpolate_mode (str): Select the interpolate mode for position
embeding vector resize. Defaults to "bicubic".
patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
layer_cfgs (Sequence | dict): Configs of each transformer layer in
encoder. Defaults to an empty dict.
init_cfg (dict, optional): Initialization config dict.
Defaults to None.
"""
def __init__(self,
arch='base',
img_size=224,
patch_size=16,
in_channels=3,
out_indices=-1,
drop_rate=0,
drop_path_rate=0,
norm_cfg=dict(type='LN', eps=1e-6),
final_norm=False,
with_cls_token=True,
avg_token=True,
frozen_stages=-1,
output_cls_token=False,
use_abs_pos_emb=False,
use_rel_pos_bias=True,
use_shared_rel_pos_bias=False,
layer_scale_init_value=0.1,
interpolate_mode='bicubic',
patch_cfg=dict(),
layer_cfgs=dict(),
init_cfg=None):
super(VisionTransformer, self).__init__(init_cfg)
if isinstance(arch, str):
arch = arch.lower()
assert arch in set(self.arch_zoo), \
f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
self.arch_settings = self.arch_zoo[arch]
else:
essential_keys = {
'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
}
assert isinstance(arch, dict) and essential_keys <= set(arch), \
f'Custom arch needs a dict with keys {essential_keys}'
self.arch_settings = arch
self.embed_dims = self.arch_settings['embed_dims']
self.num_layers = self.arch_settings['num_layers']
self.img_size = to_2tuple(img_size)
# Set patch embedding
_patch_cfg = dict(
in_channels=in_channels,
input_size=img_size,
embed_dims=self.embed_dims,
conv_type='Conv2d',
kernel_size=patch_size,
stride=patch_size,
)
_patch_cfg.update(patch_cfg)
self.patch_embed = PatchEmbed(**_patch_cfg)
self.patch_resolution = self.patch_embed.init_out_size
num_patches = self.patch_resolution[0] * self.patch_resolution[1]
# Set cls token
if output_cls_token:
assert with_cls_token is True, f'with_cls_token must be True if' \
f'set output_cls_token to True, but got {with_cls_token}'
self.with_cls_token = with_cls_token
self.output_cls_token = output_cls_token
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))
self.interpolate_mode = interpolate_mode
# Set position embedding
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(
torch.zeros(1, num_patches + self.num_extra_tokens,
self.embed_dims))
self._register_load_state_dict_pre_hook(self._prepare_pos_embed)
else:
self.pos_embed = None
self.drop_after_pos = nn.Dropout(p=drop_rate)
assert not (use_rel_pos_bias and use_shared_rel_pos_bias), (
'`use_rel_pos_bias` and `use_shared_rel_pos_bias` cannot be set '
'to True at the same time')
self.use_rel_pos_bias = use_rel_pos_bias
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(
window_size=self.patch_resolution,
num_heads=self.arch_settings['num_heads'])
else:
self.rel_pos_bias = None
self._register_load_state_dict_pre_hook(
self._prepare_relative_position_bias_table)
if isinstance(out_indices, int):
out_indices = [out_indices]
assert isinstance(out_indices, Sequence), \
f'"out_indices" must by a sequence or int, ' \
f'get {type(out_indices)} instead.'
for i, index in enumerate(out_indices):
if index < 0:
out_indices[i] = self.num_layers + index
assert 0 <= out_indices[i] <= self.num_layers, \
f'Invalid out_indices {index}'
self.out_indices = out_indices
# stochastic depth decay rule
dpr = np.linspace(0, drop_path_rate, self.num_layers)
self.layers = ModuleList()
if isinstance(layer_cfgs, dict):
layer_cfgs = [layer_cfgs] * self.num_layers
for i in range(self.num_layers):
_layer_cfg = dict(
embed_dims=self.embed_dims,
num_heads=self.arch_settings['num_heads'],
feedforward_channels=self.
arch_settings['feedforward_channels'],
layer_scale_init_value=layer_scale_init_value,
window_size=self.patch_resolution,
use_rel_pos_bias=use_rel_pos_bias,
drop_rate=drop_rate,
drop_path_rate=dpr[i],
norm_cfg=norm_cfg)
_layer_cfg.update(layer_cfgs[i])
self.layers.append(BEiTTransformerEncoderLayer(**_layer_cfg))
self.frozen_stages = frozen_stages
self.final_norm = final_norm
if final_norm:
self.norm1_name, norm1 = build_norm_layer(
norm_cfg, self.embed_dims, postfix=1)
self.add_module(self.norm1_name, norm1)
self.avg_token = avg_token
if avg_token:
self.norm2_name, norm2 = build_norm_layer(
norm_cfg, self.embed_dims, postfix=2)
self.add_module(self.norm2_name, norm2)
# freeze stages only when self.frozen_stages > 0
if self.frozen_stages > 0:
self._freeze_stages()
def forward(self, x):
B = x.shape[0]
x, patch_resolution = self.patch_embed(x)
# stole cls_tokens impl from Phil Wang, thanks
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + resize_pos_embed(
self.pos_embed,
self.patch_resolution,
patch_resolution,
mode=self.interpolate_mode,
num_extra_tokens=self.num_extra_tokens)
x = self.drop_after_pos(x)
rel_pos_bias = self.rel_pos_bias() \
if self.rel_pos_bias is not None else None
if not self.with_cls_token:
# Remove class token for transformer encoder input
x = x[:, 1:]
outs = []
for i, layer in enumerate(self.layers):
x = layer(x, rel_pos_bias)
if i == len(self.layers) - 1 and self.final_norm:
x = self.norm1(x)
if i in self.out_indices:
B, _, C = x.shape
if self.with_cls_token:
patch_token = x[:, 1:].reshape(B, *patch_resolution, C)
patch_token = patch_token.permute(0, 3, 1, 2)
cls_token = x[:, 0]
else:
patch_token = x.reshape(B, *patch_resolution, C)
patch_token = patch_token.permute(0, 3, 1, 2)
cls_token = None
if self.avg_token:
patch_token = patch_token.permute(0, 2, 3, 1)
patch_token = patch_token.reshape(
B, patch_resolution[0] * patch_resolution[1],
C).mean(dim=1)
patch_token = self.norm2(patch_token)
if self.output_cls_token:
out = [patch_token, cls_token]
else:
out = patch_token
outs.append(out)
return tuple(outs)
def _prepare_relative_position_bias_table(self, state_dict, prefix, *args,
**kwargs):
from mmengine.logging import MMLogger
logger = MMLogger.get_current_instance()
if self.use_rel_pos_bias and 'rel_pos_bias.relative_position_bias_table' in state_dict: # noqa:E501
logger.info('Expand the shared relative position embedding to '
'each transformer block.')
rel_pos_bias = state_dict[
'rel_pos_bias.relative_position_bias_table']
for i in range(self.num_layers):
state_dict[
f'layers.{i}.attn.relative_position_bias_table'] = \
rel_pos_bias.clone()
state_dict.pop('rel_pos_bias.relative_position_bias_table')
state_dict.pop('rel_pos_bias.relative_position_index')
state_dict_model = self.state_dict()
all_keys = list(state_dict_model.keys())
for key in all_keys:
if 'relative_position_bias_table' in key:
ckpt_key = prefix + key
if ckpt_key not in state_dict:
continue
rel_pos_bias_pretrained = state_dict[ckpt_key]
rel_pos_bias_current = state_dict_model[key]
L1, nH1 = rel_pos_bias_pretrained.size()
L2, nH2 = rel_pos_bias_current.size()
src_size = int((L1 - 3)**0.5)
dst_size = int((L2 - 3)**0.5)
if L1 != L2:
extra_tokens = rel_pos_bias_pretrained[-3:, :]
rel_pos_bias = rel_pos_bias_pretrained[:-3, :]
new_rel_pos_bias = resize_relative_position_bias_table(
src_size, dst_size, rel_pos_bias, nH1)
new_rel_pos_bias = torch.cat(
(new_rel_pos_bias, extra_tokens), dim=0)
logger.info('Resize the relative_position_bias_table from '
f'{state_dict[ckpt_key].shape} to '
f'{new_rel_pos_bias.shape}')
state_dict[ckpt_key] = new_rel_pos_bias
# The index buffer need to be re-generated.
index_buffer = ckpt_key.replace('bias_table', 'index')
if index_buffer in state_dict:
del state_dict[index_buffer]
|