File size: 22,542 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.drop import build_dropout
from mmcv.cnn.bricks.transformer import FFN, PatchEmbed
from mmengine.model import BaseModule, ModuleList

from mmcls.registry import MODELS
from ..utils import (BEiTAttention, resize_pos_embed,
                     resize_relative_position_bias_table, to_2tuple)
from .vision_transformer import TransformerEncoderLayer, VisionTransformer


class RelativePositionBias(BaseModule):
    """Relative Position Bias.

    This module is copied from
    https://github.com/microsoft/unilm/blob/master/beit/modeling_finetune.py#L209.

    Args:
        window_size (Sequence[int]): The window size of the relative
            position bias.
        num_heads (int): The number of head in multi-head attention.
        with_cls_token (bool): To indicate the backbone has cls_token or not.
            Defaults to True.
    """

    def __init__(
        self,
        window_size: Sequence[int],
        num_heads: int,
        with_cls_token: bool = True,
    ) -> None:
        super().__init__()
        self.window_size = window_size
        if with_cls_token:
            num_extra_tokens = 3
        else:
            num_extra_tokens = 0
        # cls to token & token to cls & cls to cls
        self.num_relative_distance = (2 * window_size[0] - 1) * (
            2 * window_size[1] - 1) + num_extra_tokens
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance,
                        num_heads))  # 2*Wh-1 * 2*Ww-1, nH

        # get pair-wise relative position index for each
        # token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] -\
            coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(
            1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        if with_cls_token:
            relative_position_index = torch.zeros(
                size=(window_size[0] * window_size[1] + 1, ) * 2,
                dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(
                -1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1
        else:
            relative_position_index = torch.zeros(
                size=(window_size[0] * window_size[1], ) * 2,
                dtype=relative_coords.dtype)
            relative_position_index = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww

        self.register_buffer('relative_position_index',
                             relative_position_index)

    def forward(self) -> torch.Tensor:
        # Wh*Ww,Wh*Ww,nH
        relative_position_bias = self.relative_position_bias_table[
            self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1] + 1,
                self.window_size[0] * self.window_size[1] + 1, -1)
        return relative_position_bias.permute(
            2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class BEiTTransformerEncoderLayer(TransformerEncoderLayer):
    """Implements one encoder layer in BEiT.

    Comparing with conventional ``TransformerEncoderLayer``, this module
    adds weights to the shortcut connection. In addition, ``BEiTAttention``
    is used to replace the original ``MultiheadAttention`` in
    ``TransformerEncoderLayer``.

    Args:
        embed_dims (int): The feature dimension.
        num_heads (int): Parallel attention heads.
        feedforward_channels (int): The hidden dimension for FFNs.
        layer_scale_init_value (float): The initialization value for
            the learnable scaling of attention and FFN. 1 means no scaling.
        drop_rate (float): Probability of an element to be zeroed
            after the feed forward layer. Defaults to 0.
        window_size (tuple[int]): The height and width of the window.
            Defaults to None.
        use_rel_pos_bias (bool): Whether to use unique relative position bias,
            if False, use shared relative position bias defined in backbone.
        attn_drop_rate (float): The drop out rate for attention layer.
            Defaults to 0.0.
        drop_path_rate (float): Stochastic depth rate. Default 0.0.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Defaults to 2.
        bias (bool | str): The option to add leanable bias for q, k, v. If bias
            is True, it will add leanable bias. If bias is 'qv_bias', it will
            only add leanable bias for q, v. If bias is False, it will not add
            bias for q, k, v. Default to 'qv_bias'.
        act_cfg (dict): The activation config for FFNs.
            Defaults to ``dict(type='GELU')``.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to dict(type='LN').
        attn_cfg (dict): The configuration for the attention layer.
            Defaults to an empty dict.
        ffn_cfg (dict): The configuration for the ffn layer.
            Defaults to ``dict(add_identity=False)``.
        init_cfg (dict or List[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 embed_dims: int,
                 num_heads: int,
                 feedforward_channels: int,
                 layer_scale_init_value: float,
                 window_size: Tuple[int, int],
                 use_rel_pos_bias: bool,
                 drop_rate: float = 0.,
                 attn_drop_rate: float = 0.,
                 drop_path_rate: float = 0.,
                 num_fcs: int = 2,
                 bias: Union[str, bool] = 'qv_bias',
                 act_cfg: dict = dict(type='GELU'),
                 norm_cfg: dict = dict(type='LN'),
                 attn_cfg: dict = dict(),
                 ffn_cfg: dict = dict(add_identity=False),
                 init_cfg: Optional[Union[dict, List[dict]]] = None) -> None:
        super().__init__(
            embed_dims=embed_dims,
            num_heads=num_heads,
            feedforward_channels=feedforward_channels,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=0.,
            drop_rate=0.,
            num_fcs=num_fcs,
            qkv_bias=bias,
            act_cfg=act_cfg,
            norm_cfg=norm_cfg,
            init_cfg=init_cfg)

        attn_cfg = {
            'window_size': window_size,
            'use_rel_pos_bias': use_rel_pos_bias,
            'qk_scale': None,
            'embed_dims': embed_dims,
            'num_heads': num_heads,
            'attn_drop': attn_drop_rate,
            'proj_drop': drop_rate,
            'bias': bias,
            **attn_cfg,
        }
        self.attn = BEiTAttention(**attn_cfg)

        ffn_cfg = {
            'embed_dims': embed_dims,
            'feedforward_channels': feedforward_channels,
            'num_fcs': num_fcs,
            'ffn_drop': drop_rate,
            'dropout_layer': dict(type='DropPath', drop_prob=drop_path_rate),
            'act_cfg': act_cfg,
            **ffn_cfg,
        }
        self.ffn = FFN(**ffn_cfg)

        # NOTE: drop path for stochastic depth, we shall see if
        # this is better than dropout here
        dropout_layer = dict(type='DropPath', drop_prob=drop_path_rate)
        self.drop_path = build_dropout(
            dropout_layer) if dropout_layer else nn.Identity()

        if layer_scale_init_value > 0:
            self.gamma_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((embed_dims)),
                requires_grad=True)
            self.gamma_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((embed_dims)),
                requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x: torch.Tensor,
                rel_pos_bias: torch.Tensor) -> torch.Tensor:
        if self.gamma_1 is None:
            x = x + self.drop_path(
                self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.ffn(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(
                self.norm1(x), rel_pos_bias=rel_pos_bias))
            x = x + self.drop_path(self.gamma_2 * self.ffn(self.norm2(x)))
        return x


@MODELS.register_module()
class BEiT(VisionTransformer):
    """Backbone for BEiT.

    A PyTorch implement of : `BEiT: BERT Pre-Training of Image Transformers
    <https://arxiv.org/abs/2106.08254>`_
    A PyTorch implement of : `BEiT v2: Masked Image Modeling with
    Vector-Quantized Visual Tokenizers <https://arxiv.org/abs/2208.06366>`_

    Args:
        arch (str | dict): BEiT architecture. If use string, choose from
        'base', 'large'. If use dict, it should have below keys:

            - **embed_dims** (int): The dimensions of embedding.
            - **num_layers** (int): The number of transformer encoder layers.
            - **num_heads** (int): The number of heads in attention modules.
            - **feedforward_channels** (int): The hidden dimensions in
              feedforward modules.

            Defaults to 'base'.
        img_size (int | tuple): The expected input image shape. Because we
            support dynamic input shape, just set the argument to the most
            common input image shape. Defaults to 224.
        patch_size (int | tuple): The patch size in patch embedding.
            Defaults to 16.
        in_channels (int): The num of input channels. Defaults to 3.
        out_indices (Sequence | int): Output from which stages.
            Defaults to -1, means the last stage.
        drop_rate (float): Probability of an element to be zeroed.
            Defaults to 0.
        drop_path_rate (float): stochastic depth rate. Defaults to 0.
        qkv_bias (bool): Whether to add bias for qkv in attention modules.
            Defaults to True.
        norm_cfg (dict): Config dict for normalization layer.
            Defaults to ``dict(type='LN')``.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Defaults to True.
        with_cls_token (bool): Whether concatenating class token into image
            tokens as transformer input. Defaults to True.
        avg_token (bool): Whether or not to use the mean patch token for
            classification. If True, the model will only take the average
            of all patch tokens. Defaults to False.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Defaults to -1.
        output_cls_token (bool): Whether output the cls_token. If set True,
            ``with_cls_token`` must be True. Defaults to True.
        use_abs_pos_emb (bool): Use position embedding like vanilla ViT.
            Defaults to False.
        use_rel_pos_bias (bool): Use relative position embedding in each
            transformer encoder layer. Defaults to True.
        use_shared_rel_pos_bias (bool): Use shared relative position embedding,
            all transformer encoder layers share the same relative position
            embedding. Defaults to False.
        layer_scale_init_value (float): The initialization value for
            the learnable scaling of attention and FFN. Defaults to 0.1.
        interpolate_mode (str): Select the interpolate mode for position
            embeding vector resize. Defaults to "bicubic".
        patch_cfg (dict): Configs of patch embeding. Defaults to an empty dict.
        layer_cfgs (Sequence | dict): Configs of each transformer layer in
            encoder. Defaults to an empty dict.
        init_cfg (dict, optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 arch='base',
                 img_size=224,
                 patch_size=16,
                 in_channels=3,
                 out_indices=-1,
                 drop_rate=0,
                 drop_path_rate=0,
                 norm_cfg=dict(type='LN', eps=1e-6),
                 final_norm=False,
                 with_cls_token=True,
                 avg_token=True,
                 frozen_stages=-1,
                 output_cls_token=False,
                 use_abs_pos_emb=False,
                 use_rel_pos_bias=True,
                 use_shared_rel_pos_bias=False,
                 layer_scale_init_value=0.1,
                 interpolate_mode='bicubic',
                 patch_cfg=dict(),
                 layer_cfgs=dict(),
                 init_cfg=None):
        super(VisionTransformer, self).__init__(init_cfg)

        if isinstance(arch, str):
            arch = arch.lower()
            assert arch in set(self.arch_zoo), \
                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]
        else:
            essential_keys = {
                'embed_dims', 'num_layers', 'num_heads', 'feedforward_channels'
            }
            assert isinstance(arch, dict) and essential_keys <= set(arch), \
                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.num_layers = self.arch_settings['num_layers']
        self.img_size = to_2tuple(img_size)

        # Set patch embedding
        _patch_cfg = dict(
            in_channels=in_channels,
            input_size=img_size,
            embed_dims=self.embed_dims,
            conv_type='Conv2d',
            kernel_size=patch_size,
            stride=patch_size,
        )
        _patch_cfg.update(patch_cfg)
        self.patch_embed = PatchEmbed(**_patch_cfg)
        self.patch_resolution = self.patch_embed.init_out_size
        num_patches = self.patch_resolution[0] * self.patch_resolution[1]

        # Set cls token
        if output_cls_token:
            assert with_cls_token is True, f'with_cls_token must be True if' \
                f'set output_cls_token to True, but got {with_cls_token}'
        self.with_cls_token = with_cls_token
        self.output_cls_token = output_cls_token
        self.cls_token = nn.Parameter(torch.zeros(1, 1, self.embed_dims))

        self.interpolate_mode = interpolate_mode

        # Set position embedding
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(
                torch.zeros(1, num_patches + self.num_extra_tokens,
                            self.embed_dims))
            self._register_load_state_dict_pre_hook(self._prepare_pos_embed)
        else:
            self.pos_embed = None
        self.drop_after_pos = nn.Dropout(p=drop_rate)

        assert not (use_rel_pos_bias and use_shared_rel_pos_bias), (
            '`use_rel_pos_bias` and `use_shared_rel_pos_bias` cannot be set '
            'to True at the same time')
        self.use_rel_pos_bias = use_rel_pos_bias

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(
                window_size=self.patch_resolution,
                num_heads=self.arch_settings['num_heads'])
        else:
            self.rel_pos_bias = None
        self._register_load_state_dict_pre_hook(
            self._prepare_relative_position_bias_table)

        if isinstance(out_indices, int):
            out_indices = [out_indices]
        assert isinstance(out_indices, Sequence), \
            f'"out_indices" must by a sequence or int, ' \
            f'get {type(out_indices)} instead.'
        for i, index in enumerate(out_indices):
            if index < 0:
                out_indices[i] = self.num_layers + index
            assert 0 <= out_indices[i] <= self.num_layers, \
                f'Invalid out_indices {index}'
        self.out_indices = out_indices

        # stochastic depth decay rule
        dpr = np.linspace(0, drop_path_rate, self.num_layers)

        self.layers = ModuleList()
        if isinstance(layer_cfgs, dict):
            layer_cfgs = [layer_cfgs] * self.num_layers
        for i in range(self.num_layers):
            _layer_cfg = dict(
                embed_dims=self.embed_dims,
                num_heads=self.arch_settings['num_heads'],
                feedforward_channels=self.
                arch_settings['feedforward_channels'],
                layer_scale_init_value=layer_scale_init_value,
                window_size=self.patch_resolution,
                use_rel_pos_bias=use_rel_pos_bias,
                drop_rate=drop_rate,
                drop_path_rate=dpr[i],
                norm_cfg=norm_cfg)
            _layer_cfg.update(layer_cfgs[i])
            self.layers.append(BEiTTransformerEncoderLayer(**_layer_cfg))

        self.frozen_stages = frozen_stages
        self.final_norm = final_norm
        if final_norm:
            self.norm1_name, norm1 = build_norm_layer(
                norm_cfg, self.embed_dims, postfix=1)
            self.add_module(self.norm1_name, norm1)

        self.avg_token = avg_token
        if avg_token:
            self.norm2_name, norm2 = build_norm_layer(
                norm_cfg, self.embed_dims, postfix=2)
            self.add_module(self.norm2_name, norm2)

        # freeze stages only when self.frozen_stages > 0
        if self.frozen_stages > 0:
            self._freeze_stages()

    def forward(self, x):
        B = x.shape[0]
        x, patch_resolution = self.patch_embed(x)

        # stole cls_tokens impl from Phil Wang, thanks
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat((cls_tokens, x), dim=1)

        if self.pos_embed is not None:
            x = x + resize_pos_embed(
                self.pos_embed,
                self.patch_resolution,
                patch_resolution,
                mode=self.interpolate_mode,
                num_extra_tokens=self.num_extra_tokens)
        x = self.drop_after_pos(x)

        rel_pos_bias = self.rel_pos_bias() \
            if self.rel_pos_bias is not None else None

        if not self.with_cls_token:
            # Remove class token for transformer encoder input
            x = x[:, 1:]

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x, rel_pos_bias)

            if i == len(self.layers) - 1 and self.final_norm:
                x = self.norm1(x)

            if i in self.out_indices:
                B, _, C = x.shape
                if self.with_cls_token:
                    patch_token = x[:, 1:].reshape(B, *patch_resolution, C)
                    patch_token = patch_token.permute(0, 3, 1, 2)
                    cls_token = x[:, 0]
                else:
                    patch_token = x.reshape(B, *patch_resolution, C)
                    patch_token = patch_token.permute(0, 3, 1, 2)
                    cls_token = None

                if self.avg_token:
                    patch_token = patch_token.permute(0, 2, 3, 1)
                    patch_token = patch_token.reshape(
                        B, patch_resolution[0] * patch_resolution[1],
                        C).mean(dim=1)
                    patch_token = self.norm2(patch_token)
                if self.output_cls_token:
                    out = [patch_token, cls_token]
                else:
                    out = patch_token
                outs.append(out)

        return tuple(outs)

    def _prepare_relative_position_bias_table(self, state_dict, prefix, *args,
                                              **kwargs):
        from mmengine.logging import MMLogger
        logger = MMLogger.get_current_instance()

        if self.use_rel_pos_bias and 'rel_pos_bias.relative_position_bias_table' in state_dict:  # noqa:E501
            logger.info('Expand the shared relative position embedding to '
                        'each transformer block.')
            rel_pos_bias = state_dict[
                'rel_pos_bias.relative_position_bias_table']
            for i in range(self.num_layers):
                state_dict[
                    f'layers.{i}.attn.relative_position_bias_table'] = \
                        rel_pos_bias.clone()
            state_dict.pop('rel_pos_bias.relative_position_bias_table')
            state_dict.pop('rel_pos_bias.relative_position_index')

        state_dict_model = self.state_dict()
        all_keys = list(state_dict_model.keys())
        for key in all_keys:
            if 'relative_position_bias_table' in key:
                ckpt_key = prefix + key
                if ckpt_key not in state_dict:
                    continue
                rel_pos_bias_pretrained = state_dict[ckpt_key]
                rel_pos_bias_current = state_dict_model[key]
                L1, nH1 = rel_pos_bias_pretrained.size()
                L2, nH2 = rel_pos_bias_current.size()
                src_size = int((L1 - 3)**0.5)
                dst_size = int((L2 - 3)**0.5)
                if L1 != L2:
                    extra_tokens = rel_pos_bias_pretrained[-3:, :]
                    rel_pos_bias = rel_pos_bias_pretrained[:-3, :]

                    new_rel_pos_bias = resize_relative_position_bias_table(
                        src_size, dst_size, rel_pos_bias, nH1)
                    new_rel_pos_bias = torch.cat(
                        (new_rel_pos_bias, extra_tokens), dim=0)
                    logger.info('Resize the relative_position_bias_table from '
                                f'{state_dict[ckpt_key].shape} to '
                                f'{new_rel_pos_bias.shape}')
                    state_dict[ckpt_key] = new_rel_pos_bias

                    # The index buffer need to be re-generated.
                    index_buffer = ckpt_key.replace('bias_table', 'index')
                    if index_buffer in state_dict:
                        del state_dict[index_buffer]