Spaces:
Runtime error
Runtime error
File size: 29,566 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Scale, is_norm
from mmengine.model import bias_init_with_prob, constant_init, normal_init
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import distance2bbox
from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
from ..layers.transformer import inverse_sigmoid
from ..task_modules import anchor_inside_flags
from ..utils import (images_to_levels, multi_apply, sigmoid_geometric_mean,
unmap)
from .atss_head import ATSSHead
@MODELS.register_module()
class RTMDetHead(ATSSHead):
"""Detection Head of RTMDet.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
with_objectness (bool): Whether to add an objectness branch.
Defaults to True.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Default: dict(type='ReLU')
"""
def __init__(self,
num_classes: int,
in_channels: int,
with_objectness: bool = True,
act_cfg: ConfigType = dict(type='ReLU'),
**kwargs) -> None:
self.act_cfg = act_cfg
self.with_objectness = with_objectness
super().__init__(num_classes, in_channels, **kwargs)
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
def _init_layers(self):
"""Initialize layers of the head."""
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
self.cls_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.reg_convs.append(
ConvModule(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
pred_pad_size = self.pred_kernel_size // 2
self.rtm_cls = nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
self.pred_kernel_size,
padding=pred_pad_size)
self.rtm_reg = nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=pred_pad_size)
if self.with_objectness:
self.rtm_obj = nn.Conv2d(
self.feat_channels,
1,
self.pred_kernel_size,
padding=pred_pad_size)
self.scales = nn.ModuleList(
[Scale(1.0) for _ in self.prior_generator.strides])
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
normal_init(self.rtm_cls, std=0.01, bias=bias_cls)
normal_init(self.rtm_reg, std=0.01)
if self.with_objectness:
normal_init(self.rtm_obj, std=0.01, bias=bias_cls)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_base_priors * 4.
"""
cls_scores = []
bbox_preds = []
for idx, (x, scale, stride) in enumerate(
zip(feats, self.scales, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls(cls_feat)
for reg_layer in self.reg_convs:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj(reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
reg_dist = scale(self.rtm_reg(reg_feat).exp()).float() * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
return tuple(cls_scores), tuple(bbox_preds)
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
labels: Tensor, label_weights: Tensor,
bbox_targets: Tensor, assign_metrics: Tensor,
stride: List[int]):
"""Compute loss of a single scale level.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor): Decoded bboxes for each scale
level with shape (N, num_anchors * 4, H, W).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors).
bbox_targets (Tensor): BBox regression targets of each anchor with
shape (N, num_total_anchors, 4).
assign_metrics (Tensor): Assign metrics with shape
(N, num_total_anchors).
stride (List[int]): Downsample stride of the feature map.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
assert stride[0] == stride[1], 'h stride is not equal to w stride!'
cls_score = cls_score.permute(0, 2, 3, 1).reshape(
-1, self.cls_out_channels).contiguous()
bbox_pred = bbox_pred.reshape(-1, 4)
bbox_targets = bbox_targets.reshape(-1, 4)
labels = labels.reshape(-1)
assign_metrics = assign_metrics.reshape(-1)
label_weights = label_weights.reshape(-1)
targets = (labels, assign_metrics)
loss_cls = self.loss_cls(
cls_score, targets, label_weights, avg_factor=1.0)
# FG cat_id: [0, num_classes -1], BG cat_id: num_classes
bg_class_ind = self.num_classes
pos_inds = ((labels >= 0)
& (labels < bg_class_ind)).nonzero().squeeze(1)
if len(pos_inds) > 0:
pos_bbox_targets = bbox_targets[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_decode_bbox_pred = pos_bbox_pred
pos_decode_bbox_targets = pos_bbox_targets
# regression loss
pos_bbox_weight = assign_metrics[pos_inds]
loss_bbox = self.loss_bbox(
pos_decode_bbox_pred,
pos_decode_bbox_targets,
weight=pos_bbox_weight,
avg_factor=1.0)
else:
loss_bbox = bbox_pred.sum() * 0
pos_bbox_weight = bbox_targets.new_tensor(0.)
return loss_cls, loss_bbox, assign_metrics.sum(), pos_bbox_weight.sum()
def loss_by_feat(self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Decoded box for each scale
level with shape (N, num_anchors * 4, H, W) in
[tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict[str, Tensor]: A dictionary of loss components.
"""
num_imgs = len(batch_img_metas)
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
flatten_cls_scores = torch.cat([
cls_score.permute(0, 2, 3, 1).reshape(num_imgs, -1,
self.cls_out_channels)
for cls_score in cls_scores
], 1)
decoded_bboxes = []
for anchor, bbox_pred in zip(anchor_list[0], bbox_preds):
anchor = anchor.reshape(-1, 4)
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(num_imgs, -1, 4)
bbox_pred = distance2bbox(anchor, bbox_pred)
decoded_bboxes.append(bbox_pred)
flatten_bboxes = torch.cat(decoded_bboxes, 1)
cls_reg_targets = self.get_targets(
flatten_cls_scores,
flatten_bboxes,
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(anchor_list, labels_list, label_weights_list, bbox_targets_list,
assign_metrics_list, sampling_results_list) = cls_reg_targets
losses_cls, losses_bbox,\
cls_avg_factors, bbox_avg_factors = multi_apply(
self.loss_by_feat_single,
cls_scores,
decoded_bboxes,
labels_list,
label_weights_list,
bbox_targets_list,
assign_metrics_list,
self.prior_generator.strides)
cls_avg_factor = reduce_mean(sum(cls_avg_factors)).clamp_(min=1).item()
losses_cls = list(map(lambda x: x / cls_avg_factor, losses_cls))
bbox_avg_factor = reduce_mean(
sum(bbox_avg_factors)).clamp_(min=1).item()
losses_bbox = list(map(lambda x: x / bbox_avg_factor, losses_bbox))
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
def get_targets(self,
cls_scores: Tensor,
bbox_preds: Tensor,
anchor_list: List[List[Tensor]],
valid_flag_list: List[List[Tensor]],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in
multiple images.
Args:
cls_scores (Tensor): Classification predictions of images,
a 3D-Tensor with shape [num_imgs, num_priors, num_classes].
bbox_preds (Tensor): Decoded bboxes predictions of one image,
a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x,
tl_y, br_x, br_y] format.
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: a tuple containing learning targets.
- anchors_list (list[list[Tensor]]): Anchors of each level.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_targets_list (list[Tensor]): BBox targets of each level.
- assign_metrics_list (list[Tensor]): alignment metrics of each
level.
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# concat all level anchors and flags to a single tensor
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
anchor_list[i] = torch.cat(anchor_list[i])
valid_flag_list[i] = torch.cat(valid_flag_list[i])
# compute targets for each image
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
# anchor_list: list(b * [-1, 4])
(all_anchors, all_labels, all_label_weights, all_bbox_targets,
all_assign_metrics, sampling_results_list) = multi_apply(
self._get_targets_single,
cls_scores.detach(),
bbox_preds.detach(),
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs)
# no valid anchors
if any([labels is None for labels in all_labels]):
return None
# split targets to a list w.r.t. multiple levels
anchors_list = images_to_levels(all_anchors, num_level_anchors)
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
assign_metrics_list = images_to_levels(all_assign_metrics,
num_level_anchors)
return (anchors_list, labels_list, label_weights_list,
bbox_targets_list, assign_metrics_list, sampling_results_list)
def _get_targets_single(self,
cls_scores: Tensor,
bbox_preds: Tensor,
flat_anchors: Tensor,
valid_flags: Tensor,
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs=True):
"""Compute regression, classification targets for anchors in a single
image.
Args:
cls_scores (list(Tensor)): Box scores for each image.
bbox_preds (list(Tensor)): Box energies / deltas for each image.
flat_anchors (Tensor): Multi-level anchors of the image, which are
concatenated into a single tensor of shape (num_anchors ,4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors,).
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It usually includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple: N is the number of total anchors in the image.
- anchors (Tensor): All anchors in the image with shape (N, 4).
- labels (Tensor): Labels of all anchors in the image with shape
(N,).
- label_weights (Tensor): Label weights of all anchor in the
image with shape (N,).
- bbox_targets (Tensor): BBox targets of all anchors in the
image with shape (N, 4).
- norm_alignment_metrics (Tensor): Normalized alignment metrics
of all priors in the image with shape (N,).
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
return (None, ) * 7
# assign gt and sample anchors
anchors = flat_anchors[inside_flags, :]
pred_instances = InstanceData(
scores=cls_scores[inside_flags, :],
bboxes=bbox_preds[inside_flags, :],
priors=anchors)
assign_result = self.assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_anchors = anchors.shape[0]
bbox_targets = torch.zeros_like(anchors)
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
assign_metrics = anchors.new_zeros(
num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
if len(pos_inds) > 0:
# point-based
pos_bbox_targets = sampling_result.pos_gt_bboxes
bbox_targets[pos_inds, :] = pos_bbox_targets
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
class_assigned_gt_inds = torch.unique(
sampling_result.pos_assigned_gt_inds)
for gt_inds in class_assigned_gt_inds:
gt_class_inds = pos_inds[sampling_result.pos_assigned_gt_inds ==
gt_inds]
assign_metrics[gt_class_inds] = assign_result.max_overlaps[
gt_class_inds]
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
anchors = unmap(anchors, num_total_anchors, inside_flags)
labels = unmap(
labels, num_total_anchors, inside_flags, fill=self.num_classes)
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
assign_metrics = unmap(assign_metrics, num_total_anchors,
inside_flags)
return (anchors, labels, label_weights, bbox_targets, assign_metrics,
sampling_result)
def get_anchors(self,
featmap_sizes: List[tuple],
batch_img_metas: List[dict],
device: Union[torch.device, str] = 'cuda') \
-> Tuple[List[List[Tensor]], List[List[Tensor]]]:
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
device (torch.device or str): Device for returned tensors.
Defaults to cuda.
Returns:
tuple:
- anchor_list (list[list[Tensor]]): Anchors of each image.
- valid_flag_list (list[list[Tensor]]): Valid flags of each
image.
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
multi_level_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device, with_stride=True)
anchor_list = [multi_level_anchors for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device)
valid_flag_list.append(multi_level_flags)
return anchor_list, valid_flag_list
@MODELS.register_module()
class RTMDetSepBNHead(RTMDetHead):
"""RTMDetHead with separated BN layers and shared conv layers.
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
share_conv (bool): Whether to share conv layers between stages.
Defaults to True.
use_depthwise (bool): Whether to use depthwise separable convolution in
head. Defaults to False.
norm_cfg (:obj:`ConfigDict` or dict)): Config dict for normalization
layer. Defaults to dict(type='BN', momentum=0.03, eps=0.001).
act_cfg (:obj:`ConfigDict` or dict)): Config dict for activation layer.
Defaults to dict(type='SiLU').
pred_kernel_size (int): Kernel size of prediction layer. Defaults to 1.
"""
def __init__(self,
num_classes: int,
in_channels: int,
share_conv: bool = True,
use_depthwise: bool = False,
norm_cfg: ConfigType = dict(
type='BN', momentum=0.03, eps=0.001),
act_cfg: ConfigType = dict(type='SiLU'),
pred_kernel_size: int = 1,
exp_on_reg=False,
**kwargs) -> None:
self.share_conv = share_conv
self.exp_on_reg = exp_on_reg
self.use_depthwise = use_depthwise
super().__init__(
num_classes,
in_channels,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
pred_kernel_size=pred_kernel_size,
**kwargs)
def _init_layers(self) -> None:
"""Initialize layers of the head."""
conv = DepthwiseSeparableConvModule \
if self.use_depthwise else ConvModule
self.cls_convs = nn.ModuleList()
self.reg_convs = nn.ModuleList()
self.rtm_cls = nn.ModuleList()
self.rtm_reg = nn.ModuleList()
if self.with_objectness:
self.rtm_obj = nn.ModuleList()
for n in range(len(self.prior_generator.strides)):
cls_convs = nn.ModuleList()
reg_convs = nn.ModuleList()
for i in range(self.stacked_convs):
chn = self.in_channels if i == 0 else self.feat_channels
cls_convs.append(
conv(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
reg_convs.append(
conv(
chn,
self.feat_channels,
3,
stride=1,
padding=1,
conv_cfg=self.conv_cfg,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
self.cls_convs.append(cls_convs)
self.reg_convs.append(reg_convs)
self.rtm_cls.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * self.cls_out_channels,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
self.rtm_reg.append(
nn.Conv2d(
self.feat_channels,
self.num_base_priors * 4,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
if self.with_objectness:
self.rtm_obj.append(
nn.Conv2d(
self.feat_channels,
1,
self.pred_kernel_size,
padding=self.pred_kernel_size // 2))
if self.share_conv:
for n in range(len(self.prior_generator.strides)):
for i in range(self.stacked_convs):
self.cls_convs[n][i].conv = self.cls_convs[0][i].conv
self.reg_convs[n][i].conv = self.reg_convs[0][i].conv
def init_weights(self) -> None:
"""Initialize weights of the head."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, mean=0, std=0.01)
if is_norm(m):
constant_init(m, 1)
bias_cls = bias_init_with_prob(0.01)
for rtm_cls, rtm_reg in zip(self.rtm_cls, self.rtm_reg):
normal_init(rtm_cls, std=0.01, bias=bias_cls)
normal_init(rtm_reg, std=0.01)
if self.with_objectness:
for rtm_obj in self.rtm_obj:
normal_init(rtm_obj, std=0.01, bias=bias_cls)
def forward(self, feats: Tuple[Tensor, ...]) -> tuple:
"""Forward features from the upstream network.
Args:
feats (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: Usually a tuple of classification scores and bbox prediction
- cls_scores (tuple[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * num_classes.
- bbox_preds (tuple[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is
num_anchors * 4.
"""
cls_scores = []
bbox_preds = []
for idx, (x, stride) in enumerate(
zip(feats, self.prior_generator.strides)):
cls_feat = x
reg_feat = x
for cls_layer in self.cls_convs[idx]:
cls_feat = cls_layer(cls_feat)
cls_score = self.rtm_cls[idx](cls_feat)
for reg_layer in self.reg_convs[idx]:
reg_feat = reg_layer(reg_feat)
if self.with_objectness:
objectness = self.rtm_obj[idx](reg_feat)
cls_score = inverse_sigmoid(
sigmoid_geometric_mean(cls_score, objectness))
if self.exp_on_reg:
reg_dist = self.rtm_reg[idx](reg_feat).exp() * stride[0]
else:
reg_dist = self.rtm_reg[idx](reg_feat) * stride[0]
cls_scores.append(cls_score)
bbox_preds.append(reg_dist)
return tuple(cls_scores), tuple(bbox_preds)
|