File size: 4,776 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import torch.nn as nn
from mmcv.cnn import ConvModule, Scale

from mmdet.models.dense_heads.fcos_head import FCOSHead
from mmdet.registry import MODELS
from mmdet.utils import OptMultiConfig


@MODELS.register_module()
class NASFCOSHead(FCOSHead):
    """Anchor-free head used in `NASFCOS <https://arxiv.org/abs/1906.04423>`_.

    It is quite similar with FCOS head, except for the searched structure of
    classification branch and bbox regression branch, where a structure of
    "dconv3x3, conv3x3, dconv3x3, conv1x1" is utilized instead.

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        strides (Sequence[int] or Sequence[Tuple[int, int]]): Strides of points
            in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
        regress_ranges (Sequence[Tuple[int, int]]): Regress range of multiple
            level points.
        center_sampling (bool): If true, use center sampling.
            Defaults to False.
        center_sample_radius (float): Radius of center sampling.
            Defaults to 1.5.
        norm_on_bbox (bool): If true, normalize the regression targets with
            FPN strides. Defaults to False.
        centerness_on_reg (bool): If true, position centerness on the
            regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042.
            Defaults to False.
        conv_bias (bool or str): If specified as `auto`, it will be decided by
            the norm_cfg. Bias of conv will be set as True if `norm_cfg` is
            None, otherwise False. Defaults to "auto".
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of localization loss.
        loss_centerness (:obj:`ConfigDict`, or dict): Config of centerness
            loss.
        norm_cfg (:obj:`ConfigDict` or dict): dictionary to construct and
            config norm layer.  Defaults to
            ``norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)``.
        init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
            dict], opitonal): Initialization config dict.
    """  # noqa: E501

    def __init__(self,
                 *args,
                 init_cfg: OptMultiConfig = None,
                 **kwargs) -> None:
        if init_cfg is None:
            init_cfg = [
                dict(type='Caffe2Xavier', layer=['ConvModule', 'Conv2d']),
                dict(
                    type='Normal',
                    std=0.01,
                    override=[
                        dict(name='conv_reg'),
                        dict(name='conv_centerness'),
                        dict(
                            name='conv_cls',
                            type='Normal',
                            std=0.01,
                            bias_prob=0.01)
                    ]),
            ]
        super().__init__(*args, init_cfg=init_cfg, **kwargs)

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        dconv3x3_config = dict(
            type='DCNv2',
            kernel_size=3,
            use_bias=True,
            deform_groups=2,
            padding=1)
        conv3x3_config = dict(type='Conv', kernel_size=3, padding=1)
        conv1x1_config = dict(type='Conv', kernel_size=1)

        self.arch_config = [
            dconv3x3_config, conv3x3_config, dconv3x3_config, conv1x1_config
        ]
        self.cls_convs = nn.ModuleList()
        self.reg_convs = nn.ModuleList()
        for i, op_ in enumerate(self.arch_config):
            op = copy.deepcopy(op_)
            chn = self.in_channels if i == 0 else self.feat_channels
            assert isinstance(op, dict)
            use_bias = op.pop('use_bias', False)
            padding = op.pop('padding', 0)
            kernel_size = op.pop('kernel_size')
            module = ConvModule(
                chn,
                self.feat_channels,
                kernel_size,
                stride=1,
                padding=padding,
                norm_cfg=self.norm_cfg,
                bias=use_bias,
                conv_cfg=op)

            self.cls_convs.append(copy.deepcopy(module))
            self.reg_convs.append(copy.deepcopy(module))

        self.conv_cls = nn.Conv2d(
            self.feat_channels, self.cls_out_channels, 3, padding=1)
        self.conv_reg = nn.Conv2d(self.feat_channels, 4, 3, padding=1)
        self.conv_centerness = nn.Conv2d(self.feat_channels, 1, 3, padding=1)

        self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides])