File size: 44,103 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Tuple

import torch
import torch.nn as nn
from mmcv.ops import DeformConv2d, MaskedConv2d
from mmengine.model import BaseModule
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.utils import (ConfigType, InstanceList, MultiConfig, OptConfigType,
                         OptInstanceList)
from ..layers import multiclass_nms
from ..task_modules.prior_generators import anchor_inside_flags, calc_region
from ..task_modules.samplers import PseudoSampler
from ..utils import images_to_levels, multi_apply, unmap
from .anchor_head import AnchorHead


class FeatureAdaption(BaseModule):
    """Feature Adaption Module.

    Feature Adaption Module is implemented based on DCN v1.
    It uses anchor shape prediction rather than feature map to
    predict offsets of deform conv layer.

    Args:
        in_channels (int): Number of channels in the input feature map.
        out_channels (int): Number of channels in the output feature map.
        kernel_size (int): Deformable conv kernel size. Defaults to 3.
        deform_groups (int): Deformable conv group size. Defaults to 4.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \
            list[dict], optional): Initialization config dict.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int = 3,
        deform_groups: int = 4,
        init_cfg: MultiConfig = dict(
            type='Normal',
            layer='Conv2d',
            std=0.1,
            override=dict(type='Normal', name='conv_adaption', std=0.01))
    ) -> None:
        super().__init__(init_cfg=init_cfg)
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deform_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv2d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deform_groups=deform_groups)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x: Tensor, shape: Tensor) -> Tensor:
        offset = self.conv_offset(shape.detach())
        x = self.relu(self.conv_adaption(x, offset))
        return x


@MODELS.register_module()
class GuidedAnchorHead(AnchorHead):
    """Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.).

    This GuidedAnchorHead will predict high-quality feature guided
    anchors and locations where anchors will be kept in inference.
    There are mainly 3 categories of bounding-boxes.

    - Sampled 9 pairs for target assignment. (approxes)
    - The square boxes where the predicted anchors are based on. (squares)
    - Guided anchors.

    Please refer to https://arxiv.org/abs/1901.03278 for more details.

    Args:
        num_classes (int): Number of classes.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels. Defaults to 256.
        approx_anchor_generator (:obj:`ConfigDict` or dict): Config dict
            for approx generator
        square_anchor_generator (:obj:`ConfigDict` or dict): Config dict
            for square generator
        anchor_coder (:obj:`ConfigDict` or dict): Config dict for anchor coder
        bbox_coder (:obj:`ConfigDict` or dict): Config dict for bbox coder
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Defaults to False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        deform_groups: (int): Group number of DCN in FeatureAdaption module.
            Defaults to 4.
        loc_filter_thr (float): Threshold to filter out unconcerned regions.
            Defaults to 0.01.
        loss_loc (:obj:`ConfigDict` or dict): Config of location loss.
        loss_shape (:obj:`ConfigDict` or dict): Config of anchor shape loss.
        loss_cls (:obj:`ConfigDict` or dict): Config of classification loss.
        loss_bbox (:obj:`ConfigDict` or dict): Config of bbox regression loss.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \
            list[dict], optional): Initialization config dict.
    """

    def __init__(
        self,
        num_classes: int,
        in_channels: int,
        feat_channels: int = 256,
        approx_anchor_generator: ConfigType = dict(
            type='AnchorGenerator',
            octave_base_scale=8,
            scales_per_octave=3,
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        square_anchor_generator: ConfigType = dict(
            type='AnchorGenerator',
            ratios=[1.0],
            scales=[8],
            strides=[4, 8, 16, 32, 64]),
        anchor_coder: ConfigType = dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        bbox_coder: ConfigType = dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[.0, .0, .0, .0],
            target_stds=[1.0, 1.0, 1.0, 1.0]),
        reg_decoded_bbox: bool = False,
        deform_groups: int = 4,
        loc_filter_thr: float = 0.01,
        train_cfg: OptConfigType = None,
        test_cfg: OptConfigType = None,
        loss_loc: ConfigType = dict(
            type='FocalLoss',
            use_sigmoid=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_shape: ConfigType = dict(
            type='BoundedIoULoss', beta=0.2, loss_weight=1.0),
        loss_cls: ConfigType = dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox: ConfigType = dict(
            type='SmoothL1Loss', beta=1.0, loss_weight=1.0),
        init_cfg: MultiConfig = dict(
            type='Normal',
            layer='Conv2d',
            std=0.01,
            override=dict(
                type='Normal', name='conv_loc', std=0.01, lbias_prob=0.01))
    ) -> None:
        super(AnchorHead, self).__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.feat_channels = feat_channels
        self.deform_groups = deform_groups
        self.loc_filter_thr = loc_filter_thr

        # build approx_anchor_generator and square_anchor_generator
        assert (approx_anchor_generator['octave_base_scale'] ==
                square_anchor_generator['scales'][0])
        assert (approx_anchor_generator['strides'] ==
                square_anchor_generator['strides'])
        self.approx_anchor_generator = TASK_UTILS.build(
            approx_anchor_generator)
        self.square_anchor_generator = TASK_UTILS.build(
            square_anchor_generator)
        self.approxs_per_octave = self.approx_anchor_generator \
            .num_base_priors[0]

        self.reg_decoded_bbox = reg_decoded_bbox

        # one anchor per location
        self.num_base_priors = self.square_anchor_generator.num_base_priors[0]

        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        self.loc_focal_loss = loss_loc['type'] in ['FocalLoss']
        if self.use_sigmoid_cls:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1

        # build bbox_coder
        self.anchor_coder = TASK_UTILS.build(anchor_coder)
        self.bbox_coder = TASK_UTILS.build(bbox_coder)

        # build losses
        self.loss_loc = MODELS.build(loss_loc)
        self.loss_shape = MODELS.build(loss_shape)
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox = MODELS.build(loss_bbox)

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            # use PseudoSampler when no sampler in train_cfg
            if train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler()

            self.ga_assigner = TASK_UTILS.build(self.train_cfg['ga_assigner'])
            if train_cfg.get('ga_sampler', None) is not None:
                self.ga_sampler = TASK_UTILS.build(
                    self.train_cfg['ga_sampler'],
                    default_args=dict(context=self))
            else:
                self.ga_sampler = PseudoSampler()

        self._init_layers()

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.relu = nn.ReLU(inplace=True)
        self.conv_loc = nn.Conv2d(self.in_channels, 1, 1)
        self.conv_shape = nn.Conv2d(self.in_channels, self.num_base_priors * 2,
                                    1)
        self.feature_adaption = FeatureAdaption(
            self.in_channels,
            self.feat_channels,
            kernel_size=3,
            deform_groups=self.deform_groups)
        self.conv_cls = MaskedConv2d(
            self.feat_channels, self.num_base_priors * self.cls_out_channels,
            1)
        self.conv_reg = MaskedConv2d(self.feat_channels,
                                     self.num_base_priors * 4, 1)

    def forward_single(self, x: Tensor) -> Tuple[Tensor]:
        """Forward feature of a single scale level."""
        loc_pred = self.conv_loc(x)
        shape_pred = self.conv_shape(x)
        x = self.feature_adaption(x, shape_pred)
        # masked conv is only used during inference for speed-up
        if not self.training:
            mask = loc_pred.sigmoid()[0] >= self.loc_filter_thr
        else:
            mask = None
        cls_score = self.conv_cls(x, mask)
        bbox_pred = self.conv_reg(x, mask)
        return cls_score, bbox_pred, shape_pred, loc_pred

    def forward(self, x: List[Tensor]) -> Tuple[List[Tensor]]:
        """Forward features from the upstream network."""
        return multi_apply(self.forward_single, x)

    def get_sampled_approxs(self,
                            featmap_sizes: List[Tuple[int, int]],
                            batch_img_metas: List[dict],
                            device: str = 'cuda') -> tuple:
        """Get sampled approxs and inside flags according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            batch_img_metas (list[dict]): Image meta info.
            device (str): device for returned tensors

        Returns:
            tuple: approxes of each image, inside flags of each image
        """
        num_imgs = len(batch_img_metas)

        # since feature map sizes of all images are the same, we only compute
        # approxes for one time
        multi_level_approxs = self.approx_anchor_generator.grid_priors(
            featmap_sizes, device=device)
        approxs_list = [multi_level_approxs for _ in range(num_imgs)]

        # for each image, we compute inside flags of multi level approxes
        inside_flag_list = []
        for img_id, img_meta in enumerate(batch_img_metas):
            multi_level_flags = []
            multi_level_approxs = approxs_list[img_id]

            # obtain valid flags for each approx first
            multi_level_approx_flags = self.approx_anchor_generator \
                .valid_flags(featmap_sizes,
                             img_meta['pad_shape'],
                             device=device)

            for i, flags in enumerate(multi_level_approx_flags):
                approxs = multi_level_approxs[i]
                inside_flags_list = []
                for j in range(self.approxs_per_octave):
                    split_valid_flags = flags[j::self.approxs_per_octave]
                    split_approxs = approxs[j::self.approxs_per_octave, :]
                    inside_flags = anchor_inside_flags(
                        split_approxs, split_valid_flags,
                        img_meta['img_shape'][:2],
                        self.train_cfg['allowed_border'])
                    inside_flags_list.append(inside_flags)
                # inside_flag for a position is true if any anchor in this
                # position is true
                inside_flags = (
                    torch.stack(inside_flags_list, 0).sum(dim=0) > 0)
                multi_level_flags.append(inside_flags)
            inside_flag_list.append(multi_level_flags)
        return approxs_list, inside_flag_list

    def get_anchors(self,
                    featmap_sizes: List[Tuple[int, int]],
                    shape_preds: List[Tensor],
                    loc_preds: List[Tensor],
                    batch_img_metas: List[dict],
                    use_loc_filter: bool = False,
                    device: str = 'cuda') -> tuple:
        """Get squares according to feature map sizes and guided anchors.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            shape_preds (list[tensor]): Multi-level shape predictions.
            loc_preds (list[tensor]): Multi-level location predictions.
            batch_img_metas (list[dict]): Image meta info.
            use_loc_filter (bool): Use loc filter or not. Defaults to False
            device (str): device for returned tensors.
                Defaults to `cuda`.

        Returns:
            tuple: square approxs of each image, guided anchors of each image,
            loc masks of each image.
        """
        num_imgs = len(batch_img_metas)
        num_levels = len(featmap_sizes)

        # since feature map sizes of all images are the same, we only compute
        # squares for one time
        multi_level_squares = self.square_anchor_generator.grid_priors(
            featmap_sizes, device=device)
        squares_list = [multi_level_squares for _ in range(num_imgs)]

        # for each image, we compute multi level guided anchors
        guided_anchors_list = []
        loc_mask_list = []
        for img_id, img_meta in enumerate(batch_img_metas):
            multi_level_guided_anchors = []
            multi_level_loc_mask = []
            for i in range(num_levels):
                squares = squares_list[img_id][i]
                shape_pred = shape_preds[i][img_id]
                loc_pred = loc_preds[i][img_id]
                guided_anchors, loc_mask = self._get_guided_anchors_single(
                    squares,
                    shape_pred,
                    loc_pred,
                    use_loc_filter=use_loc_filter)
                multi_level_guided_anchors.append(guided_anchors)
                multi_level_loc_mask.append(loc_mask)
            guided_anchors_list.append(multi_level_guided_anchors)
            loc_mask_list.append(multi_level_loc_mask)
        return squares_list, guided_anchors_list, loc_mask_list

    def _get_guided_anchors_single(
            self,
            squares: Tensor,
            shape_pred: Tensor,
            loc_pred: Tensor,
            use_loc_filter: bool = False) -> Tuple[Tensor]:
        """Get guided anchors and loc masks for a single level.

        Args:
            squares (tensor): Squares of a single level.
            shape_pred (tensor): Shape predictions of a single level.
            loc_pred (tensor): Loc predictions of a single level.
            use_loc_filter (list[tensor]): Use loc filter or not.
                Defaults to False.

        Returns:
            tuple: guided anchors, location masks
        """
        # calculate location filtering mask
        loc_pred = loc_pred.sigmoid().detach()
        if use_loc_filter:
            loc_mask = loc_pred >= self.loc_filter_thr
        else:
            loc_mask = loc_pred >= 0.0
        mask = loc_mask.permute(1, 2, 0).expand(-1, -1, self.num_base_priors)
        mask = mask.contiguous().view(-1)
        # calculate guided anchors
        squares = squares[mask]
        anchor_deltas = shape_pred.permute(1, 2, 0).contiguous().view(
            -1, 2).detach()[mask]
        bbox_deltas = anchor_deltas.new_full(squares.size(), 0)
        bbox_deltas[:, 2:] = anchor_deltas
        guided_anchors = self.anchor_coder.decode(
            squares, bbox_deltas, wh_ratio_clip=1e-6)
        return guided_anchors, mask

    def ga_loc_targets(self, batch_gt_instances: InstanceList,
                       featmap_sizes: List[Tuple[int, int]]) -> tuple:
        """Compute location targets for guided anchoring.

        Each feature map is divided into positive, negative and ignore regions.
        - positive regions: target 1, weight 1
        - ignore regions: target 0, weight 0
        - negative regions: target 0, weight 0.1

        Args:
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            featmap_sizes (list[tuple]): Multi level sizes of each feature
                maps.

        Returns:
            tuple: Returns a tuple containing location targets.
        """
        anchor_scale = self.approx_anchor_generator.octave_base_scale
        anchor_strides = self.approx_anchor_generator.strides
        # Currently only supports same stride in x and y direction.
        for stride in anchor_strides:
            assert (stride[0] == stride[1])
        anchor_strides = [stride[0] for stride in anchor_strides]

        center_ratio = self.train_cfg['center_ratio']
        ignore_ratio = self.train_cfg['ignore_ratio']
        img_per_gpu = len(batch_gt_instances)
        num_lvls = len(featmap_sizes)
        r1 = (1 - center_ratio) / 2
        r2 = (1 - ignore_ratio) / 2
        all_loc_targets = []
        all_loc_weights = []
        all_ignore_map = []
        for lvl_id in range(num_lvls):
            h, w = featmap_sizes[lvl_id]
            loc_targets = torch.zeros(
                img_per_gpu,
                1,
                h,
                w,
                device=batch_gt_instances[0].bboxes.device,
                dtype=torch.float32)
            loc_weights = torch.full_like(loc_targets, -1)
            ignore_map = torch.zeros_like(loc_targets)
            all_loc_targets.append(loc_targets)
            all_loc_weights.append(loc_weights)
            all_ignore_map.append(ignore_map)
        for img_id in range(img_per_gpu):
            gt_bboxes = batch_gt_instances[img_id].bboxes
            scale = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
                               (gt_bboxes[:, 3] - gt_bboxes[:, 1]))
            min_anchor_size = scale.new_full(
                (1, ), float(anchor_scale * anchor_strides[0]))
            # assign gt bboxes to different feature levels w.r.t. their scales
            target_lvls = torch.floor(
                torch.log2(scale) - torch.log2(min_anchor_size) + 0.5)
            target_lvls = target_lvls.clamp(min=0, max=num_lvls - 1).long()
            for gt_id in range(gt_bboxes.size(0)):
                lvl = target_lvls[gt_id].item()
                # rescaled to corresponding feature map
                gt_ = gt_bboxes[gt_id, :4] / anchor_strides[lvl]
                # calculate ignore regions
                ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
                    gt_, r2, featmap_sizes[lvl])
                # calculate positive (center) regions
                ctr_x1, ctr_y1, ctr_x2, ctr_y2 = calc_region(
                    gt_, r1, featmap_sizes[lvl])
                all_loc_targets[lvl][img_id, 0, ctr_y1:ctr_y2 + 1,
                                     ctr_x1:ctr_x2 + 1] = 1
                all_loc_weights[lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
                                     ignore_x1:ignore_x2 + 1] = 0
                all_loc_weights[lvl][img_id, 0, ctr_y1:ctr_y2 + 1,
                                     ctr_x1:ctr_x2 + 1] = 1
                # calculate ignore map on nearby low level feature
                if lvl > 0:
                    d_lvl = lvl - 1
                    # rescaled to corresponding feature map
                    gt_ = gt_bboxes[gt_id, :4] / anchor_strides[d_lvl]
                    ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
                        gt_, r2, featmap_sizes[d_lvl])
                    all_ignore_map[d_lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
                                          ignore_x1:ignore_x2 + 1] = 1
                # calculate ignore map on nearby high level feature
                if lvl < num_lvls - 1:
                    u_lvl = lvl + 1
                    # rescaled to corresponding feature map
                    gt_ = gt_bboxes[gt_id, :4] / anchor_strides[u_lvl]
                    ignore_x1, ignore_y1, ignore_x2, ignore_y2 = calc_region(
                        gt_, r2, featmap_sizes[u_lvl])
                    all_ignore_map[u_lvl][img_id, 0, ignore_y1:ignore_y2 + 1,
                                          ignore_x1:ignore_x2 + 1] = 1
        for lvl_id in range(num_lvls):
            # ignore negative regions w.r.t. ignore map
            all_loc_weights[lvl_id][(all_loc_weights[lvl_id] < 0)
                                    & (all_ignore_map[lvl_id] > 0)] = 0
            # set negative regions with weight 0.1
            all_loc_weights[lvl_id][all_loc_weights[lvl_id] < 0] = 0.1
        # loc average factor to balance loss
        loc_avg_factor = sum(
            [t.size(0) * t.size(-1) * t.size(-2)
             for t in all_loc_targets]) / 200
        return all_loc_targets, all_loc_weights, loc_avg_factor

    def _ga_shape_target_single(self,
                                flat_approxs: Tensor,
                                inside_flags: Tensor,
                                flat_squares: Tensor,
                                gt_instances: InstanceData,
                                gt_instances_ignore: Optional[InstanceData],
                                img_meta: dict,
                                unmap_outputs: bool = True) -> tuple:
        """Compute guided anchoring targets.

        This function returns sampled anchors and gt bboxes directly
        rather than calculates regression targets.

        Args:
            flat_approxs (Tensor): flat approxs of a single image,
                shape (n, 4)
            inside_flags (Tensor): inside flags of a single image,
                shape (n, ).
            flat_squares (Tensor): flat squares of a single image,
                shape (approxs_per_octave * n, 4)
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It usually includes ``bboxes`` and ``labels``
                attributes.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
            img_meta (dict): Meta info of a single image.
            unmap_outputs (bool): unmap outputs or not.

        Returns:
            tuple: Returns a tuple containing shape targets of each image.
        """
        if not inside_flags.any():
            raise ValueError(
                'There is no valid anchor inside the image boundary. Please '
                'check the image size and anchor sizes, or set '
                '``allowed_border`` to -1 to skip the condition.')
        # assign gt and sample anchors
        num_square = flat_squares.size(0)
        approxs = flat_approxs.view(num_square, self.approxs_per_octave, 4)
        approxs = approxs[inside_flags, ...]
        squares = flat_squares[inside_flags, :]

        pred_instances = InstanceData()
        pred_instances.priors = squares
        pred_instances.approxs = approxs

        assign_result = self.ga_assigner.assign(
            pred_instances=pred_instances,
            gt_instances=gt_instances,
            gt_instances_ignore=gt_instances_ignore)
        sampling_result = self.ga_sampler.sample(
            assign_result=assign_result,
            pred_instances=pred_instances,
            gt_instances=gt_instances)

        bbox_anchors = torch.zeros_like(squares)
        bbox_gts = torch.zeros_like(squares)
        bbox_weights = torch.zeros_like(squares)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            bbox_anchors[pos_inds, :] = sampling_result.pos_bboxes
            bbox_gts[pos_inds, :] = sampling_result.pos_gt_bboxes
            bbox_weights[pos_inds, :] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_squares.size(0)
            bbox_anchors = unmap(bbox_anchors, num_total_anchors, inside_flags)
            bbox_gts = unmap(bbox_gts, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (bbox_anchors, bbox_gts, bbox_weights, pos_inds, neg_inds,
                sampling_result)

    def ga_shape_targets(self,
                         approx_list: List[List[Tensor]],
                         inside_flag_list: List[List[Tensor]],
                         square_list: List[List[Tensor]],
                         batch_gt_instances: InstanceList,
                         batch_img_metas: List[dict],
                         batch_gt_instances_ignore: OptInstanceList = None,
                         unmap_outputs: bool = True) -> tuple:
        """Compute guided anchoring targets.

        Args:
            approx_list (list[list[Tensor]]): Multi level approxs of each
                image.
            inside_flag_list (list[list[Tensor]]): Multi level inside flags
                of each image.
            square_list (list[list[Tensor]]): Multi level squares of each
                image.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): unmap outputs or not. Defaults to None.

        Returns:
            tuple:  Returns a tuple containing shape targets.
        """
        num_imgs = len(batch_img_metas)
        assert len(approx_list) == len(inside_flag_list) == len(
            square_list) == num_imgs
        # anchor number of multi levels
        num_level_squares = [squares.size(0) for squares in square_list[0]]
        # concat all level anchors and flags to a single tensor
        inside_flag_flat_list = []
        approx_flat_list = []
        square_flat_list = []
        for i in range(num_imgs):
            assert len(square_list[i]) == len(inside_flag_list[i])
            inside_flag_flat_list.append(torch.cat(inside_flag_list[i]))
            approx_flat_list.append(torch.cat(approx_list[i]))
            square_flat_list.append(torch.cat(square_list[i]))

        # compute targets for each image
        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None for _ in range(num_imgs)]
        (all_bbox_anchors, all_bbox_gts, all_bbox_weights, pos_inds_list,
         neg_inds_list, sampling_results_list) = multi_apply(
             self._ga_shape_target_single,
             approx_flat_list,
             inside_flag_flat_list,
             square_flat_list,
             batch_gt_instances,
             batch_gt_instances_ignore,
             batch_img_metas,
             unmap_outputs=unmap_outputs)
        # sampled anchors of all images
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        # split targets to a list w.r.t. multiple levels
        bbox_anchors_list = images_to_levels(all_bbox_anchors,
                                             num_level_squares)
        bbox_gts_list = images_to_levels(all_bbox_gts, num_level_squares)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_squares)
        return (bbox_anchors_list, bbox_gts_list, bbox_weights_list,
                avg_factor)

    def loss_shape_single(self, shape_pred: Tensor, bbox_anchors: Tensor,
                          bbox_gts: Tensor, anchor_weights: Tensor,
                          avg_factor: int) -> Tensor:
        """Compute shape loss in single level."""
        shape_pred = shape_pred.permute(0, 2, 3, 1).contiguous().view(-1, 2)
        bbox_anchors = bbox_anchors.contiguous().view(-1, 4)
        bbox_gts = bbox_gts.contiguous().view(-1, 4)
        anchor_weights = anchor_weights.contiguous().view(-1, 4)
        bbox_deltas = bbox_anchors.new_full(bbox_anchors.size(), 0)
        bbox_deltas[:, 2:] += shape_pred
        # filter out negative samples to speed-up weighted_bounded_iou_loss
        inds = torch.nonzero(
            anchor_weights[:, 0] > 0, as_tuple=False).squeeze(1)
        bbox_deltas_ = bbox_deltas[inds]
        bbox_anchors_ = bbox_anchors[inds]
        bbox_gts_ = bbox_gts[inds]
        anchor_weights_ = anchor_weights[inds]
        pred_anchors_ = self.anchor_coder.decode(
            bbox_anchors_, bbox_deltas_, wh_ratio_clip=1e-6)
        loss_shape = self.loss_shape(
            pred_anchors_, bbox_gts_, anchor_weights_, avg_factor=avg_factor)
        return loss_shape

    def loss_loc_single(self, loc_pred: Tensor, loc_target: Tensor,
                        loc_weight: Tensor, avg_factor: float) -> Tensor:
        """Compute location loss in single level."""
        loss_loc = self.loss_loc(
            loc_pred.reshape(-1, 1),
            loc_target.reshape(-1).long(),
            loc_weight.reshape(-1),
            avg_factor=avg_factor)
        return loss_loc

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            shape_preds: List[Tensor],
            loc_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                has shape (N, num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            shape_preds (list[Tensor]): shape predictions for each scale
                level with shape (N, 1, H, W).
            loc_preds (list[Tensor]): location predictions for each scale
                level with shape (N, num_anchors * 2, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict: A dictionary of loss components.
        """

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.approx_anchor_generator.num_levels

        device = cls_scores[0].device

        # get loc targets
        loc_targets, loc_weights, loc_avg_factor = self.ga_loc_targets(
            batch_gt_instances, featmap_sizes)

        # get sampled approxes
        approxs_list, inside_flag_list = self.get_sampled_approxs(
            featmap_sizes, batch_img_metas, device=device)
        # get squares and guided anchors
        squares_list, guided_anchors_list, _ = self.get_anchors(
            featmap_sizes,
            shape_preds,
            loc_preds,
            batch_img_metas,
            device=device)

        # get shape targets
        shape_targets = self.ga_shape_targets(approxs_list, inside_flag_list,
                                              squares_list, batch_gt_instances,
                                              batch_img_metas)
        (bbox_anchors_list, bbox_gts_list, anchor_weights_list,
         ga_avg_factor) = shape_targets

        # get anchor targets
        cls_reg_targets = self.get_targets(
            guided_anchors_list,
            inside_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         avg_factor) = cls_reg_targets

        # anchor number of multi levels
        num_level_anchors = [
            anchors.size(0) for anchors in guided_anchors_list[0]
        ]
        # concat all level anchors to a single tensor
        concat_anchor_list = []
        for i in range(len(guided_anchors_list)):
            concat_anchor_list.append(torch.cat(guided_anchors_list[i]))
        all_anchor_list = images_to_levels(concat_anchor_list,
                                           num_level_anchors)

        # get classification and bbox regression losses
        losses_cls, losses_bbox = multi_apply(
            self.loss_by_feat_single,
            cls_scores,
            bbox_preds,
            all_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            avg_factor=avg_factor)

        # get anchor location loss
        losses_loc = []
        for i in range(len(loc_preds)):
            loss_loc = self.loss_loc_single(
                loc_preds[i],
                loc_targets[i],
                loc_weights[i],
                avg_factor=loc_avg_factor)
            losses_loc.append(loss_loc)

        # get anchor shape loss
        losses_shape = []
        for i in range(len(shape_preds)):
            loss_shape = self.loss_shape_single(
                shape_preds[i],
                bbox_anchors_list[i],
                bbox_gts_list[i],
                anchor_weights_list[i],
                avg_factor=ga_avg_factor)
            losses_shape.append(loss_shape)

        return dict(
            loss_cls=losses_cls,
            loss_bbox=losses_bbox,
            loss_shape=losses_shape,
            loss_loc=losses_loc)

    def predict_by_feat(self,
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        shape_preds: List[Tensor],
                        loc_preds: List[Tensor],
                        batch_img_metas: List[dict],
                        cfg: OptConfigType = None,
                        rescale: bool = False) -> InstanceList:
        """Transform a batch of output features extracted from the head into
        bbox results.

        Args:
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            shape_preds (list[Tensor]): shape predictions for each scale
                level with shape (N, 1, H, W).
            loc_preds (list[Tensor]): location predictions for each scale
                level with shape (N, num_anchors * 2, H, W).
            batch_img_metas (list[dict], Optional): Batch image meta info.
                Defaults to None.
            cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4), the last
              dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_scores) == len(bbox_preds) == len(shape_preds) == len(
            loc_preds)
        num_levels = len(cls_scores)
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        device = cls_scores[0].device
        # get guided anchors
        _, guided_anchors, loc_masks = self.get_anchors(
            featmap_sizes,
            shape_preds,
            loc_preds,
            batch_img_metas,
            use_loc_filter=not self.training,
            device=device)
        result_list = []
        for img_id in range(len(batch_img_metas)):
            cls_score_list = [
                cls_scores[i][img_id].detach() for i in range(num_levels)
            ]
            bbox_pred_list = [
                bbox_preds[i][img_id].detach() for i in range(num_levels)
            ]
            guided_anchor_list = [
                guided_anchors[img_id][i].detach() for i in range(num_levels)
            ]
            loc_mask_list = [
                loc_masks[img_id][i].detach() for i in range(num_levels)
            ]
            proposals = self._predict_by_feat_single(
                cls_scores=cls_score_list,
                bbox_preds=bbox_pred_list,
                mlvl_anchors=guided_anchor_list,
                mlvl_masks=loc_mask_list,
                img_meta=batch_img_metas[img_id],
                cfg=cfg,
                rescale=rescale)
            result_list.append(proposals)
        return result_list

    def _predict_by_feat_single(self,
                                cls_scores: List[Tensor],
                                bbox_preds: List[Tensor],
                                mlvl_anchors: List[Tensor],
                                mlvl_masks: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigType,
                                rescale: bool = False) -> InstanceData:
        """Transform a single image's features extracted from the head into
        bbox results.

        Args:
            cls_scores (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has shape
                (num_priors * 4, H, W).
            mlvl_anchors (list[Tensor]): Each element in the list is
                the anchors of a single level in feature pyramid. it has
                shape (num_priors, 4).
            mlvl_masks (list[Tensor]): Each element in the list is location
                masks of a single level.
            img_meta (dict): Image meta info.
            cfg (:obj:`ConfigDict` or dict): Test / postprocessing
                configuration, if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

            - scores (Tensor): Classification scores, has a shape
              (num_instance, )
            - labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
            - bboxes (Tensor): Has a shape (num_instances, 4), the last
              dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        mlvl_bbox_preds = []
        mlvl_valid_anchors = []
        mlvl_scores = []
        for cls_score, bbox_pred, anchors, mask in zip(cls_scores, bbox_preds,
                                                       mlvl_anchors,
                                                       mlvl_masks):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
            # if no location is kept, end.
            if mask.sum() == 0:
                continue
            # reshape scores and bbox_pred
            cls_score = cls_score.permute(1, 2,
                                          0).reshape(-1, self.cls_out_channels)
            if self.use_sigmoid_cls:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(-1)
            bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            # filter scores, bbox_pred w.r.t. mask.
            # anchors are filtered in get_anchors() beforehand.
            scores = scores[mask, :]
            bbox_pred = bbox_pred[mask, :]
            if scores.dim() == 0:
                anchors = anchors.unsqueeze(0)
                scores = scores.unsqueeze(0)
                bbox_pred = bbox_pred.unsqueeze(0)
            # filter anchors, bbox_pred, scores w.r.t. scores
            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[0] > nms_pre:
                if self.use_sigmoid_cls:
                    max_scores, _ = scores.max(dim=1)
                else:
                    # remind that we set FG labels to [0, num_class-1]
                    # since mmdet v2.0
                    # BG cat_id: num_class
                    max_scores, _ = scores[:, :-1].max(dim=1)
                _, topk_inds = max_scores.topk(nms_pre)
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[topk_inds, :]
                scores = scores[topk_inds, :]

            mlvl_bbox_preds.append(bbox_pred)
            mlvl_valid_anchors.append(anchors)
            mlvl_scores.append(scores)

        mlvl_bbox_preds = torch.cat(mlvl_bbox_preds)
        mlvl_anchors = torch.cat(mlvl_valid_anchors)
        mlvl_scores = torch.cat(mlvl_scores)
        mlvl_bboxes = self.bbox_coder.decode(
            mlvl_anchors, mlvl_bbox_preds, max_shape=img_meta['img_shape'])

        if rescale:
            assert img_meta.get('scale_factor') is not None
            mlvl_bboxes /= mlvl_bboxes.new_tensor(
                img_meta['scale_factor']).repeat((1, 2))

        if self.use_sigmoid_cls:
            # Add a dummy background class to the backend when using sigmoid
            # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
            # BG cat_id: num_class
            padding = mlvl_scores.new_zeros(mlvl_scores.shape[0], 1)
            mlvl_scores = torch.cat([mlvl_scores, padding], dim=1)
        # multi class NMS
        det_bboxes, det_labels = multiclass_nms(mlvl_bboxes, mlvl_scores,
                                                cfg.score_thr, cfg.nms,
                                                cfg.max_per_img)

        results = InstanceData()
        results.bboxes = det_bboxes[:, :-1]
        results.scores = det_bboxes[:, -1]
        results.labels = det_labels
        return results