File size: 48,358 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
# Copyright (c) OpenMMLab. All rights reserved.
from __future__ import division
import copy
from typing import Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn
from mmcv.ops import DeformConv2d
from mmengine.config import ConfigDict
from mmengine.model import BaseModule, ModuleList
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures import SampleList
from mmdet.utils import (ConfigType, InstanceList, MultiConfig,
                         OptInstanceList, OptMultiConfig)
from ..task_modules.assigners import RegionAssigner
from ..task_modules.samplers import PseudoSampler
from ..utils import (images_to_levels, multi_apply, select_single_mlvl,
                     unpack_gt_instances)
from .base_dense_head import BaseDenseHead
from .rpn_head import RPNHead


class AdaptiveConv(BaseModule):
    """AdaptiveConv used to adapt the sampling location with the anchors.

    Args:
        in_channels (int): Number of channels in the input image.
        out_channels (int): Number of channels produced by the convolution.
        kernel_size (int or tuple[int]): Size of the conv kernel.
            Defaults to 3.
        stride (int or tuple[int]): Stride of the convolution. Defaults to 1.
        padding (int or tuple[int]): Zero-padding added to both sides of
            the input. Defaults to 1.
        dilation (int or tuple[int]): Spacing between kernel elements.
            Defaults to 3.
        groups (int): Number of blocked connections from input channels to
            output channels. Defaults to 1.
        bias (bool): If set True, adds a learnable bias to the output.
            Defaults to False.
        adapt_type (str): Type of adaptive conv, can be either ``offset``
            (arbitrary anchors) or 'dilation' (uniform anchor).
            Defaults to 'dilation'.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \
            list[dict]): Initialization config dict.
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int]] = 3,
        stride: Union[int, Tuple[int]] = 1,
        padding: Union[int, Tuple[int]] = 1,
        dilation: Union[int, Tuple[int]] = 3,
        groups: int = 1,
        bias: bool = False,
        adapt_type: str = 'dilation',
        init_cfg: MultiConfig = dict(
            type='Normal', std=0.01, override=dict(name='conv'))
    ) -> None:
        super().__init__(init_cfg=init_cfg)
        assert adapt_type in ['offset', 'dilation']
        self.adapt_type = adapt_type

        assert kernel_size == 3, 'Adaptive conv only supports kernels 3'
        if self.adapt_type == 'offset':
            assert stride == 1 and padding == 1 and groups == 1, \
                'Adaptive conv offset mode only supports padding: {1}, ' \
                f'stride: {1}, groups: {1}'
            self.conv = DeformConv2d(
                in_channels,
                out_channels,
                kernel_size,
                padding=padding,
                stride=stride,
                groups=groups,
                bias=bias)
        else:
            self.conv = nn.Conv2d(
                in_channels,
                out_channels,
                kernel_size,
                padding=dilation,
                dilation=dilation)

    def forward(self, x: Tensor, offset: Tensor) -> Tensor:
        """Forward function."""
        if self.adapt_type == 'offset':
            N, _, H, W = x.shape
            assert offset is not None
            assert H * W == offset.shape[1]
            # reshape [N, NA, 18] to (N, 18, H, W)
            offset = offset.permute(0, 2, 1).reshape(N, -1, H, W)
            offset = offset.contiguous()
            x = self.conv(x, offset)
        else:
            assert offset is None
            x = self.conv(x)
        return x


@MODELS.register_module()
class StageCascadeRPNHead(RPNHead):
    """Stage of CascadeRPNHead.

    Args:
        in_channels (int): Number of channels in the input feature map.
        anchor_generator (:obj:`ConfigDict` or dict): anchor generator config.
        adapt_cfg (:obj:`ConfigDict` or dict): adaptation config.
        bridged_feature (bool): whether update rpn feature. Defaults to False.
        with_cls (bool): whether use classification branch. Defaults to True.
        init_cfg :obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or
            list[dict], optional): Initialization config dict.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 anchor_generator: ConfigType = dict(
                     type='AnchorGenerator',
                     scales=[8],
                     ratios=[1.0],
                     strides=[4, 8, 16, 32, 64]),
                 adapt_cfg: ConfigType = dict(type='dilation', dilation=3),
                 bridged_feature: bool = False,
                 with_cls: bool = True,
                 init_cfg: OptMultiConfig = None,
                 **kwargs) -> None:
        self.with_cls = with_cls
        self.anchor_strides = anchor_generator['strides']
        self.anchor_scales = anchor_generator['scales']
        self.bridged_feature = bridged_feature
        self.adapt_cfg = adapt_cfg
        super().__init__(
            in_channels=in_channels,
            anchor_generator=anchor_generator,
            init_cfg=init_cfg,
            **kwargs)

        # override sampling and sampler
        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            # use PseudoSampler when sampling is False
            if self.train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

        if init_cfg is None:
            self.init_cfg = dict(
                type='Normal', std=0.01, override=[dict(name='rpn_reg')])
            if self.with_cls:
                self.init_cfg['override'].append(dict(name='rpn_cls'))

    def _init_layers(self) -> None:
        """Init layers of a CascadeRPN stage."""
        adapt_cfg = copy.deepcopy(self.adapt_cfg)
        adapt_cfg['adapt_type'] = adapt_cfg.pop('type')
        self.rpn_conv = AdaptiveConv(self.in_channels, self.feat_channels,
                                     **adapt_cfg)
        if self.with_cls:
            self.rpn_cls = nn.Conv2d(self.feat_channels,
                                     self.num_anchors * self.cls_out_channels,
                                     1)
        self.rpn_reg = nn.Conv2d(self.feat_channels, self.num_anchors * 4, 1)
        self.relu = nn.ReLU(inplace=True)

    def forward_single(self, x: Tensor, offset: Tensor) -> Tuple[Tensor]:
        """Forward function of single scale."""
        bridged_x = x
        x = self.relu(self.rpn_conv(x, offset))
        if self.bridged_feature:
            bridged_x = x  # update feature
        cls_score = self.rpn_cls(x) if self.with_cls else None
        bbox_pred = self.rpn_reg(x)
        return bridged_x, cls_score, bbox_pred

    def forward(
            self,
            feats: List[Tensor],
            offset_list: Optional[List[Tensor]] = None) -> Tuple[List[Tensor]]:
        """Forward function."""
        if offset_list is None:
            offset_list = [None for _ in range(len(feats))]
        return multi_apply(self.forward_single, feats, offset_list)

    def _region_targets_single(self, flat_anchors: Tensor, valid_flags: Tensor,
                               gt_instances: InstanceData, img_meta: dict,
                               gt_instances_ignore: InstanceData,
                               featmap_sizes: List[Tuple[int, int]],
                               num_level_anchors: List[int]) -> tuple:
        """Get anchor targets based on region for single level.

        Args:
            flat_anchors (Tensor): Multi-level anchors of the image, which are
                concatenated into a single tensor of shape (num_anchors, 4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors, ).
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for current image.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            featmap_sizes (list[Tuple[int, int]]): Feature map size each level.
            num_level_anchors (list[int]): The number of anchors in each level.

        Returns:
            tuple:

                - labels (Tensor): Labels of each level.
                - label_weights (Tensor): Label weights of each level.
                - bbox_targets (Tensor): BBox targets of each level.
                - bbox_weights (Tensor): BBox weights of each level.
                - pos_inds (Tensor): positive samples indexes.
                - neg_inds (Tensor): negative samples indexes.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        pred_instances = InstanceData()
        pred_instances.priors = flat_anchors
        pred_instances.valid_flags = valid_flags

        assign_result = self.assigner.assign(
            pred_instances,
            gt_instances,
            img_meta,
            featmap_sizes,
            num_level_anchors,
            self.anchor_scales[0],
            self.anchor_strides,
            gt_instances_ignore=gt_instances_ignore,
            allowed_border=self.train_cfg['allowed_border'])
        sampling_result = self.sampler.sample(assign_result, pred_instances,
                                              gt_instances)

        num_anchors = flat_anchors.shape[0]
        bbox_targets = torch.zeros_like(flat_anchors)
        bbox_weights = torch.zeros_like(flat_anchors)
        labels = flat_anchors.new_zeros(num_anchors, dtype=torch.long)
        label_weights = flat_anchors.new_zeros(num_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_bboxes, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0
            labels[pos_inds] = sampling_result.pos_gt_labels
            if self.train_cfg['pos_weight'] <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg['pos_weight']
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result)

    def region_targets(
        self,
        anchor_list: List[List[Tensor]],
        valid_flag_list: List[List[Tensor]],
        featmap_sizes: List[Tuple[int, int]],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None,
        return_sampling_results: bool = False,
    ) -> tuple:
        """Compute regression and classification targets for anchors when using
        RegionAssigner.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image.
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image.
            featmap_sizes (list[Tuple[int, int]]): Feature map size each level.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            tuple:

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each
                  level.
                - bbox_targets_list (list[Tensor]): BBox targets of each level.
                - bbox_weights_list (list[Tensor]): BBox weights of each level.
                - avg_factor (int): Average factor that is used to average
                  the loss. When using sampling method, avg_factor is usually
                  the sum of positive and negative priors. When using
                  ``PseudoSampler``, ``avg_factor`` is usually equal to the
                  number of positive priors.
        """
        num_imgs = len(batch_img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors to a single tensor
        concat_anchor_list = []
        concat_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            concat_anchor_list.append(torch.cat(anchor_list[i]))
            concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))

        # compute targets for each image
        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         pos_inds_list, neg_inds_list, sampling_results_list) = multi_apply(
             self._region_targets_single,
             concat_anchor_list,
             concat_valid_flag_list,
             batch_gt_instances,
             batch_img_metas,
             batch_gt_instances_ignore,
             featmap_sizes=featmap_sizes,
             num_level_anchors=num_level_anchors)
        # no valid anchors
        if any([labels is None for labels in all_labels]):
            return None
        # sampled anchors of all images
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        res = (labels_list, label_weights_list, bbox_targets_list,
               bbox_weights_list, avg_factor)
        if return_sampling_results:
            res = res + (sampling_results_list, )
        return res

    def get_targets(
        self,
        anchor_list: List[List[Tensor]],
        valid_flag_list: List[List[Tensor]],
        featmap_sizes: List[Tuple[int, int]],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None,
        return_sampling_results: bool = False,
    ) -> tuple:
        """Compute regression and classification targets for anchors.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image.
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image.
            featmap_sizes (list[Tuple[int, int]]): Feature map size each level.
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple:

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each
                  level.
                - bbox_targets_list (list[Tensor]): BBox targets of each level.
                - bbox_weights_list (list[Tensor]): BBox weights of each level.
                - avg_factor (int): Average factor that is used to average
                  the loss. When using sampling method, avg_factor is usually
                  the sum of positive and negative priors. When using
                  ``PseudoSampler``, ``avg_factor`` is usually equal to the
                  number of positive priors.
        """
        if isinstance(self.assigner, RegionAssigner):
            cls_reg_targets = self.region_targets(
                anchor_list,
                valid_flag_list,
                featmap_sizes,
                batch_gt_instances,
                batch_img_metas,
                batch_gt_instances_ignore=batch_gt_instances_ignore,
                return_sampling_results=return_sampling_results)
        else:
            cls_reg_targets = super().get_targets(
                anchor_list,
                valid_flag_list,
                batch_gt_instances,
                batch_img_metas,
                batch_gt_instances_ignore=batch_gt_instances_ignore,
                return_sampling_results=return_sampling_results)
        return cls_reg_targets

    def anchor_offset(self, anchor_list: List[List[Tensor]],
                      anchor_strides: List[int],
                      featmap_sizes: List[Tuple[int, int]]) -> List[Tensor]:
        """ Get offset for deformable conv based on anchor shape
        NOTE: currently support deformable kernel_size=3 and dilation=1

        Args:
            anchor_list (list[list[tensor])): [NI, NLVL, NA, 4] list of
                multi-level anchors
            anchor_strides (list[int]): anchor stride of each level

        Returns:
            list[tensor]: offset of DeformConv kernel with shapes of
            [NLVL, NA, 2, 18].
        """

        def _shape_offset(anchors, stride, ks=3, dilation=1):
            # currently support kernel_size=3 and dilation=1
            assert ks == 3 and dilation == 1
            pad = (ks - 1) // 2
            idx = torch.arange(-pad, pad + 1, dtype=dtype, device=device)
            yy, xx = torch.meshgrid(idx, idx)  # return order matters
            xx = xx.reshape(-1)
            yy = yy.reshape(-1)
            w = (anchors[:, 2] - anchors[:, 0]) / stride
            h = (anchors[:, 3] - anchors[:, 1]) / stride
            w = w / (ks - 1) - dilation
            h = h / (ks - 1) - dilation
            offset_x = w[:, None] * xx  # (NA, ks**2)
            offset_y = h[:, None] * yy  # (NA, ks**2)
            return offset_x, offset_y

        def _ctr_offset(anchors, stride, featmap_size):
            feat_h, feat_w = featmap_size
            assert len(anchors) == feat_h * feat_w

            x = (anchors[:, 0] + anchors[:, 2]) * 0.5
            y = (anchors[:, 1] + anchors[:, 3]) * 0.5
            # compute centers on feature map
            x = x / stride
            y = y / stride
            # compute predefine centers
            xx = torch.arange(0, feat_w, device=anchors.device)
            yy = torch.arange(0, feat_h, device=anchors.device)
            yy, xx = torch.meshgrid(yy, xx)
            xx = xx.reshape(-1).type_as(x)
            yy = yy.reshape(-1).type_as(y)

            offset_x = x - xx  # (NA, )
            offset_y = y - yy  # (NA, )
            return offset_x, offset_y

        num_imgs = len(anchor_list)
        num_lvls = len(anchor_list[0])
        dtype = anchor_list[0][0].dtype
        device = anchor_list[0][0].device
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]

        offset_list = []
        for i in range(num_imgs):
            mlvl_offset = []
            for lvl in range(num_lvls):
                c_offset_x, c_offset_y = _ctr_offset(anchor_list[i][lvl],
                                                     anchor_strides[lvl],
                                                     featmap_sizes[lvl])
                s_offset_x, s_offset_y = _shape_offset(anchor_list[i][lvl],
                                                       anchor_strides[lvl])

                # offset = ctr_offset + shape_offset
                offset_x = s_offset_x + c_offset_x[:, None]
                offset_y = s_offset_y + c_offset_y[:, None]

                # offset order (y0, x0, y1, x2, .., y8, x8, y9, x9)
                offset = torch.stack([offset_y, offset_x], dim=-1)
                offset = offset.reshape(offset.size(0), -1)  # [NA, 2*ks**2]
                mlvl_offset.append(offset)
            offset_list.append(torch.cat(mlvl_offset))  # [totalNA, 2*ks**2]
        offset_list = images_to_levels(offset_list, num_level_anchors)
        return offset_list

    def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
                            anchors: Tensor, labels: Tensor,
                            label_weights: Tensor, bbox_targets: Tensor,
                            bbox_weights: Tensor, avg_factor: int) -> tuple:
        """Loss function on single scale."""
        # classification loss
        if self.with_cls:
            labels = labels.reshape(-1)
            label_weights = label_weights.reshape(-1)
            cls_score = cls_score.permute(0, 2, 3,
                                          1).reshape(-1, self.cls_out_channels)
            loss_cls = self.loss_cls(
                cls_score, labels, label_weights, avg_factor=avg_factor)
        # regression loss
        bbox_targets = bbox_targets.reshape(-1, 4)
        bbox_weights = bbox_weights.reshape(-1, 4)
        bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 4)
        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            anchors = anchors.reshape(-1, 4)
            bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
        loss_reg = self.loss_bbox(
            bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor)
        if self.with_cls:
            return loss_cls, loss_reg
        return None, loss_reg

    def loss_by_feat(
        self,
        anchor_list: List[List[Tensor]],
        valid_flag_list: List[List[Tensor]],
        cls_scores: List[Tensor],
        bbox_preds: List[Tensor],
        batch_gt_instances: InstanceList,
        batch_img_metas: List[dict],
        batch_gt_instances_ignore: OptInstanceList = None
    ) -> Dict[str, Tensor]:
        """Compute losses of the head.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image.
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict[str, Tensor]: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in bbox_preds]
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            featmap_sizes,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore,
            return_sampling_results=True)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         avg_factor, sampling_results_list) = cls_reg_targets
        if not sampling_results_list[0].avg_factor_with_neg:
            # 200 is hard-coded average factor,
            # which follows guided anchoring.
            avg_factor = sum([label.numel() for label in labels_list]) / 200.0

        # change per image, per level anchor_list to per_level, per_image
        mlvl_anchor_list = list(zip(*anchor_list))
        # concat mlvl_anchor_list
        mlvl_anchor_list = [
            torch.cat(anchors, dim=0) for anchors in mlvl_anchor_list
        ]

        losses = multi_apply(
            self.loss_by_feat_single,
            cls_scores,
            bbox_preds,
            mlvl_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            avg_factor=avg_factor)
        if self.with_cls:
            return dict(loss_rpn_cls=losses[0], loss_rpn_reg=losses[1])
        return dict(loss_rpn_reg=losses[1])

    def predict_by_feat(self,
                        anchor_list: List[List[Tensor]],
                        cls_scores: List[Tensor],
                        bbox_preds: List[Tensor],
                        batch_img_metas: List[dict],
                        cfg: Optional[ConfigDict] = None,
                        rescale: bool = False) -> InstanceList:
        """Get proposal predict. Overriding to enable input ``anchor_list``
        from outside.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image.
            cls_scores (list[Tensor]): Classification scores for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for all
                scale levels, each is a 4D-tensor, has shape
                (batch_size, num_priors * 4, H, W).
            batch_img_metas (list[dict], Optional): Image meta info.
            cfg (:obj:`ConfigDict`, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            list[:obj:`InstanceData`]: Object detection results of each image
            after the post process. Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        assert len(cls_scores) == len(bbox_preds)

        result_list = []
        for img_id in range(len(batch_img_metas)):
            cls_score_list = select_single_mlvl(cls_scores, img_id)
            bbox_pred_list = select_single_mlvl(bbox_preds, img_id)
            proposals = self._predict_by_feat_single(
                cls_scores=cls_score_list,
                bbox_preds=bbox_pred_list,
                mlvl_anchors=anchor_list[img_id],
                img_meta=batch_img_metas[img_id],
                cfg=cfg,
                rescale=rescale)
            result_list.append(proposals)
        return result_list

    def _predict_by_feat_single(self,
                                cls_scores: List[Tensor],
                                bbox_preds: List[Tensor],
                                mlvl_anchors: List[Tensor],
                                img_meta: dict,
                                cfg: ConfigDict,
                                rescale: bool = False) -> InstanceData:
        """Transform outputs of a single image into bbox predictions.

        Args:
            cls_scores (list[Tensor]): Box scores from all scale
                levels of a single image, each item has shape
                (num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas from
                all scale levels of a single image, each item has
                shape (num_anchors * 4, H, W).
            mlvl_anchors (list[Tensor]): Box reference from all scale
                levels of a single image, each item has shape
                (num_total_anchors, 4).
            img_shape (tuple[int]): Shape of the input image,
                (height, width, 3).
            scale_factor (ndarray): Scale factor of the image arange as
                (w_scale, h_scale, w_scale, h_scale).
            cfg (:obj:`ConfigDict`): Test / postprocessing configuration,
                if None, test_cfg would be used.
            rescale (bool): If True, return boxes in original image space.
                Defaults to False.

        Returns:
            :obj:`InstanceData`: Detection results of each image
            after the post process.
            Each item usually contains following keys.

                - scores (Tensor): Classification scores, has a shape
                  (num_instance, )
                - labels (Tensor): Labels of bboxes, has a shape
                  (num_instances, ).
                - bboxes (Tensor): Has a shape (num_instances, 4),
                  the last dimension 4 arrange as (x1, y1, x2, y2).
        """
        cfg = self.test_cfg if cfg is None else cfg
        cfg = copy.deepcopy(cfg)
        # bboxes from different level should be independent during NMS,
        # level_ids are used as labels for batched NMS to separate them
        level_ids = []
        mlvl_scores = []
        mlvl_bbox_preds = []
        mlvl_valid_anchors = []
        nms_pre = cfg.get('nms_pre', -1)
        for idx in range(len(cls_scores)):
            rpn_cls_score = cls_scores[idx]
            rpn_bbox_pred = bbox_preds[idx]
            assert rpn_cls_score.size()[-2:] == rpn_bbox_pred.size()[-2:]
            rpn_cls_score = rpn_cls_score.permute(1, 2, 0)
            if self.use_sigmoid_cls:
                rpn_cls_score = rpn_cls_score.reshape(-1)
                scores = rpn_cls_score.sigmoid()
            else:
                rpn_cls_score = rpn_cls_score.reshape(-1, 2)
                # We set FG labels to [0, num_class-1] and BG label to
                # num_class in RPN head since mmdet v2.5, which is unified to
                # be consistent with other head since mmdet v2.0. In mmdet v2.0
                # to v2.4 we keep BG label as 0 and FG label as 1 in rpn head.
                scores = rpn_cls_score.softmax(dim=1)[:, 0]
            rpn_bbox_pred = rpn_bbox_pred.permute(1, 2, 0).reshape(-1, 4)
            anchors = mlvl_anchors[idx]

            if 0 < nms_pre < scores.shape[0]:
                # sort is faster than topk
                # _, topk_inds = scores.topk(cfg.nms_pre)
                ranked_scores, rank_inds = scores.sort(descending=True)
                topk_inds = rank_inds[:nms_pre]
                scores = ranked_scores[:nms_pre]
                rpn_bbox_pred = rpn_bbox_pred[topk_inds, :]
                anchors = anchors[topk_inds, :]
            mlvl_scores.append(scores)
            mlvl_bbox_preds.append(rpn_bbox_pred)
            mlvl_valid_anchors.append(anchors)
            level_ids.append(
                scores.new_full((scores.size(0), ), idx, dtype=torch.long))

        anchors = torch.cat(mlvl_valid_anchors)
        rpn_bbox_pred = torch.cat(mlvl_bbox_preds)
        bboxes = self.bbox_coder.decode(
            anchors, rpn_bbox_pred, max_shape=img_meta['img_shape'])

        proposals = InstanceData()
        proposals.bboxes = bboxes
        proposals.scores = torch.cat(mlvl_scores)
        proposals.level_ids = torch.cat(level_ids)

        return self._bbox_post_process(
            results=proposals, cfg=cfg, rescale=rescale, img_meta=img_meta)

    def refine_bboxes(self, anchor_list: List[List[Tensor]],
                      bbox_preds: List[Tensor],
                      img_metas: List[dict]) -> List[List[Tensor]]:
        """Refine bboxes through stages."""
        num_levels = len(bbox_preds)
        new_anchor_list = []
        for img_id in range(len(img_metas)):
            mlvl_anchors = []
            for i in range(num_levels):
                bbox_pred = bbox_preds[i][img_id].detach()
                bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 4)
                img_shape = img_metas[img_id]['img_shape']
                bboxes = self.bbox_coder.decode(anchor_list[img_id][i],
                                                bbox_pred, img_shape)
                mlvl_anchors.append(bboxes)
            new_anchor_list.append(mlvl_anchors)
        return new_anchor_list

    def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, _, batch_img_metas = outputs

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        if self.adapt_cfg['type'] == 'offset':
            offset_list = self.anchor_offset(anchor_list, self.anchor_strides,
                                             featmap_sizes)
        else:
            offset_list = None

        x, cls_score, bbox_pred = self(x, offset_list)
        rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, bbox_pred,
                           batch_gt_instances, batch_img_metas)
        losses = self.loss_by_feat(*rpn_loss_inputs)

        return losses

    def loss_and_predict(
        self,
        x: Tuple[Tensor],
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None,
    ) -> Tuple[dict, InstanceList]:
        """Perform forward propagation of the head, then calculate loss and
        predictions from the features and data samples.

        Args:
            x (tuple[Tensor]): Features from FPN.
            batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
                the meta information of each image and corresponding
                annotations.
            proposal_cfg (:obj`ConfigDict`, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.

        Returns:
            tuple: the return value is a tuple contains:

                - losses: (dict[str, Tensor]): A dictionary of loss components.
                - predictions (list[:obj:`InstanceData`]): Detection
                  results of each image after the post process.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, _, batch_img_metas = outputs

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        if self.adapt_cfg['type'] == 'offset':
            offset_list = self.anchor_offset(anchor_list, self.anchor_strides,
                                             featmap_sizes)
        else:
            offset_list = None

        x, cls_score, bbox_pred = self(x, offset_list)
        rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score, bbox_pred,
                           batch_gt_instances, batch_img_metas)
        losses = self.loss_by_feat(*rpn_loss_inputs)

        predictions = self.predict_by_feat(
            anchor_list,
            cls_score,
            bbox_pred,
            batch_img_metas=batch_img_metas,
            cfg=proposal_cfg)
        return losses, predictions

    def predict(self,
                x: Tuple[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image
            after the post process.
        """
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, _ = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        if self.adapt_cfg['type'] == 'offset':
            offset_list = self.anchor_offset(anchor_list, self.anchor_strides,
                                             featmap_sizes)
        else:
            offset_list = None

        x, cls_score, bbox_pred = self(x, offset_list)
        predictions = self.stages[-1].predict_by_feat(
            anchor_list,
            cls_score,
            bbox_pred,
            batch_img_metas=batch_img_metas,
            rescale=rescale)
        return predictions


@MODELS.register_module()
class CascadeRPNHead(BaseDenseHead):
    """The CascadeRPNHead will predict more accurate region proposals, which is
    required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN
    consists of a sequence of RPNStage to progressively improve the accuracy of
    the detected proposals.

    More details can be found in ``https://arxiv.org/abs/1909.06720``.

    Args:
        num_stages (int): number of CascadeRPN stages.
        stages (list[:obj:`ConfigDict` or dict]): list of configs to build
            the stages.
        train_cfg (list[:obj:`ConfigDict` or dict]): list of configs at
            training time each stage.
        test_cfg (:obj:`ConfigDict` or dict): config at testing time.
        init_cfg (:obj:`ConfigDict` or list[:obj:`ConfigDict`] or dict or \
            list[dict]): Initialization config dict.
    """

    def __init__(self,
                 num_classes: int,
                 num_stages: int,
                 stages: List[ConfigType],
                 train_cfg: List[ConfigType],
                 test_cfg: ConfigType,
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        assert num_classes == 1, 'Only support num_classes == 1'
        assert num_stages == len(stages)
        self.num_stages = num_stages
        # Be careful! Pretrained weights cannot be loaded when use
        # nn.ModuleList
        self.stages = ModuleList()
        for i in range(len(stages)):
            train_cfg_i = train_cfg[i] if train_cfg is not None else None
            stages[i].update(train_cfg=train_cfg_i)
            stages[i].update(test_cfg=test_cfg)
            self.stages.append(MODELS.build(stages[i]))
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

    def loss_by_feat(self):
        """loss_by_feat() is implemented in StageCascadeRPNHead."""
        pass

    def predict_by_feat(self):
        """predict_by_feat() is implemented in StageCascadeRPNHead."""
        pass

    def loss(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> dict:
        """Perform forward propagation and loss calculation of the detection
        head on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.

        Returns:
            dict: A dictionary of loss components.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, _, batch_img_metas = outputs

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, valid_flag_list = self.stages[0].get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        losses = dict()

        for i in range(self.num_stages):
            stage = self.stages[i]

            if stage.adapt_cfg['type'] == 'offset':
                offset_list = stage.anchor_offset(anchor_list,
                                                  stage.anchor_strides,
                                                  featmap_sizes)
            else:
                offset_list = None
            x, cls_score, bbox_pred = stage(x, offset_list)
            rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score,
                               bbox_pred, batch_gt_instances, batch_img_metas)
            stage_loss = stage.loss_by_feat(*rpn_loss_inputs)
            for name, value in stage_loss.items():
                losses['s{}.{}'.format(i, name)] = value

            # refine boxes
            if i < self.num_stages - 1:
                anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
                                                  batch_img_metas)

        return losses

    def loss_and_predict(
        self,
        x: Tuple[Tensor],
        batch_data_samples: SampleList,
        proposal_cfg: Optional[ConfigDict] = None,
    ) -> Tuple[dict, InstanceList]:
        """Perform forward propagation of the head, then calculate loss and
        predictions from the features and data samples.

        Args:
            x (tuple[Tensor]): Features from FPN.
            batch_data_samples (list[:obj:`DetDataSample`]): Each item contains
                the meta information of each image and corresponding
                annotations.
            proposal_cfg (ConfigDict, optional): Test / postprocessing
                configuration, if None, test_cfg would be used.
                Defaults to None.

        Returns:
            tuple: the return value is a tuple contains:

                - losses: (dict[str, Tensor]): A dictionary of loss components.
                - predictions (list[:obj:`InstanceData`]): Detection
                  results of each image after the post process.
        """
        outputs = unpack_gt_instances(batch_data_samples)
        batch_gt_instances, _, batch_img_metas = outputs

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, valid_flag_list = self.stages[0].get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        losses = dict()

        for i in range(self.num_stages):
            stage = self.stages[i]

            if stage.adapt_cfg['type'] == 'offset':
                offset_list = stage.anchor_offset(anchor_list,
                                                  stage.anchor_strides,
                                                  featmap_sizes)
            else:
                offset_list = None
            x, cls_score, bbox_pred = stage(x, offset_list)
            rpn_loss_inputs = (anchor_list, valid_flag_list, cls_score,
                               bbox_pred, batch_gt_instances, batch_img_metas)
            stage_loss = stage.loss_by_feat(*rpn_loss_inputs)
            for name, value in stage_loss.items():
                losses['s{}.{}'.format(i, name)] = value

            # refine boxes
            if i < self.num_stages - 1:
                anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
                                                  batch_img_metas)

        predictions = self.stages[-1].predict_by_feat(
            anchor_list,
            cls_score,
            bbox_pred,
            batch_img_metas=batch_img_metas,
            cfg=proposal_cfg)
        return losses, predictions

    def predict(self,
                x: Tuple[Tensor],
                batch_data_samples: SampleList,
                rescale: bool = False) -> InstanceList:
        """Perform forward propagation of the detection head and predict
        detection results on the features of the upstream network.

        Args:
            x (tuple[Tensor]): Multi-level features from the
                upstream network, each is a 4D-tensor.
            batch_data_samples (List[:obj:`DetDataSample`]): The Data
                Samples. It usually includes information such as
                `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
            rescale (bool, optional): Whether to rescale the results.
                Defaults to False.

        Returns:
            list[obj:`InstanceData`]: Detection results of each image
            after the post process.
        """
        batch_img_metas = [
            data_samples.metainfo for data_samples in batch_data_samples
        ]

        featmap_sizes = [featmap.size()[-2:] for featmap in x]
        device = x[0].device
        anchor_list, _ = self.stages[0].get_anchors(
            featmap_sizes, batch_img_metas, device=device)

        for i in range(self.num_stages):
            stage = self.stages[i]
            if stage.adapt_cfg['type'] == 'offset':
                offset_list = stage.anchor_offset(anchor_list,
                                                  stage.anchor_strides,
                                                  featmap_sizes)
            else:
                offset_list = None
            x, cls_score, bbox_pred = stage(x, offset_list)
            if i < self.num_stages - 1:
                anchor_list = stage.refine_bboxes(anchor_list, bbox_pred,
                                                  batch_img_metas)

        predictions = self.stages[-1].predict_by_feat(
            anchor_list,
            cls_score,
            bbox_pred,
            batch_img_metas=batch_img_metas,
            rescale=rescale)
        return predictions