File size: 24,816 Bytes
f549064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from mmengine.structures import InstanceData
from torch import Tensor

from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import BaseBoxes, cat_boxes, get_box_tensor
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
                         OptInstanceList, OptMultiConfig)
from ..task_modules.prior_generators import (AnchorGenerator,
                                             anchor_inside_flags)
from ..task_modules.samplers import PseudoSampler
from ..utils import images_to_levels, multi_apply, unmap
from .base_dense_head import BaseDenseHead


@MODELS.register_module()
class AnchorHead(BaseDenseHead):
    """Anchor-based head (RPN, RetinaNet, SSD, etc.).

    Args:
        num_classes (int): Number of categories excluding the background
            category.
        in_channels (int): Number of channels in the input feature map.
        feat_channels (int): Number of hidden channels. Used in child classes.
        anchor_generator (dict): Config dict for anchor generator
        bbox_coder (dict): Config of bounding box coder.
        reg_decoded_bbox (bool): If true, the regression loss would be
            applied directly on decoded bounding boxes, converting both
            the predicted boxes and regression targets to absolute
            coordinates format. Default False. It should be `True` when
            using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
        loss_cls (dict): Config of classification loss.
        loss_bbox (dict): Config of localization loss.
        train_cfg (dict): Training config of anchor head.
        test_cfg (dict): Testing config of anchor head.
        init_cfg (dict or list[dict], optional): Initialization config dict.
    """  # noqa: W605

    def __init__(
        self,
        num_classes: int,
        in_channels: int,
        feat_channels: int = 256,
        anchor_generator: ConfigType = dict(
            type='AnchorGenerator',
            scales=[8, 16, 32],
            ratios=[0.5, 1.0, 2.0],
            strides=[4, 8, 16, 32, 64]),
        bbox_coder: ConfigType = dict(
            type='DeltaXYWHBBoxCoder',
            clip_border=True,
            target_means=(.0, .0, .0, .0),
            target_stds=(1.0, 1.0, 1.0, 1.0)),
        reg_decoded_bbox: bool = False,
        loss_cls: ConfigType = dict(
            type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
        loss_bbox: ConfigType = dict(
            type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
        train_cfg: OptConfigType = None,
        test_cfg: OptConfigType = None,
        init_cfg: OptMultiConfig = dict(
            type='Normal', layer='Conv2d', std=0.01)
    ) -> None:
        super().__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.num_classes = num_classes
        self.feat_channels = feat_channels
        self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
        if self.use_sigmoid_cls:
            self.cls_out_channels = num_classes
        else:
            self.cls_out_channels = num_classes + 1

        if self.cls_out_channels <= 0:
            raise ValueError(f'num_classes={num_classes} is too small')
        self.reg_decoded_bbox = reg_decoded_bbox

        self.bbox_coder = TASK_UTILS.build(bbox_coder)
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_bbox = MODELS.build(loss_bbox)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        if self.train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            if train_cfg.get('sampler', None) is not None:
                self.sampler = TASK_UTILS.build(
                    self.train_cfg['sampler'], default_args=dict(context=self))
            else:
                self.sampler = PseudoSampler(context=self)

        self.fp16_enabled = False

        self.prior_generator = TASK_UTILS.build(anchor_generator)

        # Usually the numbers of anchors for each level are the same
        # except SSD detectors. So it is an int in the most dense
        # heads but a list of int in SSDHead
        self.num_base_priors = self.prior_generator.num_base_priors[0]
        self._init_layers()

    @property
    def num_anchors(self) -> int:
        warnings.warn('DeprecationWarning: `num_anchors` is deprecated, '
                      'for consistency or also use '
                      '`num_base_priors` instead')
        return self.prior_generator.num_base_priors[0]

    @property
    def anchor_generator(self) -> AnchorGenerator:
        warnings.warn('DeprecationWarning: anchor_generator is deprecated, '
                      'please use "prior_generator" instead')
        return self.prior_generator

    def _init_layers(self) -> None:
        """Initialize layers of the head."""
        self.conv_cls = nn.Conv2d(self.in_channels,
                                  self.num_base_priors * self.cls_out_channels,
                                  1)
        reg_dim = self.bbox_coder.encode_size
        self.conv_reg = nn.Conv2d(self.in_channels,
                                  self.num_base_priors * reg_dim, 1)

    def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
        """Forward feature of a single scale level.

        Args:
            x (Tensor): Features of a single scale level.

        Returns:
            tuple:
                cls_score (Tensor): Cls scores for a single scale level \
                    the channels number is num_base_priors * num_classes.
                bbox_pred (Tensor): Box energies / deltas for a single scale \
                    level, the channels number is num_base_priors * 4.
        """
        cls_score = self.conv_cls(x)
        bbox_pred = self.conv_reg(x)
        return cls_score, bbox_pred

    def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
        """Forward features from the upstream network.

        Args:
            x (tuple[Tensor]): Features from the upstream network, each is
                a 4D-tensor.

        Returns:
            tuple: A tuple of classification scores and bbox prediction.

                - cls_scores (list[Tensor]): Classification scores for all \
                    scale levels, each is a 4D-tensor, the channels number \
                    is num_base_priors * num_classes.
                - bbox_preds (list[Tensor]): Box energies / deltas for all \
                    scale levels, each is a 4D-tensor, the channels number \
                    is num_base_priors * 4.
        """
        return multi_apply(self.forward_single, x)

    def get_anchors(self,
                    featmap_sizes: List[tuple],
                    batch_img_metas: List[dict],
                    device: Union[torch.device, str] = 'cuda') \
            -> Tuple[List[List[Tensor]], List[List[Tensor]]]:
        """Get anchors according to feature map sizes.

        Args:
            featmap_sizes (list[tuple]): Multi-level feature map sizes.
            batch_img_metas (list[dict]): Image meta info.
            device (torch.device | str): Device for returned tensors.
                Defaults to cuda.

        Returns:
            tuple:

                - anchor_list (list[list[Tensor]]): Anchors of each image.
                - valid_flag_list (list[list[Tensor]]): Valid flags of each
                  image.
        """
        num_imgs = len(batch_img_metas)

        # since feature map sizes of all images are the same, we only compute
        # anchors for one time
        multi_level_anchors = self.prior_generator.grid_priors(
            featmap_sizes, device=device)
        anchor_list = [multi_level_anchors for _ in range(num_imgs)]

        # for each image, we compute valid flags of multi level anchors
        valid_flag_list = []
        for img_id, img_meta in enumerate(batch_img_metas):
            multi_level_flags = self.prior_generator.valid_flags(
                featmap_sizes, img_meta['pad_shape'], device)
            valid_flag_list.append(multi_level_flags)

        return anchor_list, valid_flag_list

    def _get_targets_single(self,
                            flat_anchors: Union[Tensor, BaseBoxes],
                            valid_flags: Tensor,
                            gt_instances: InstanceData,
                            img_meta: dict,
                            gt_instances_ignore: Optional[InstanceData] = None,
                            unmap_outputs: bool = True) -> tuple:
        """Compute regression and classification targets for anchors in a
        single image.

        Args:
            flat_anchors (Tensor or :obj:`BaseBoxes`): Multi-level anchors
                of the image, which are concatenated into a single tensor
                or box type of shape (num_anchors, 4)
            valid_flags (Tensor): Multi level valid flags of the image,
                which are concatenated into a single tensor of
                    shape (num_anchors, ).
            gt_instances (:obj:`InstanceData`): Ground truth of instance
                annotations. It should includes ``bboxes`` and ``labels``
                attributes.
            img_meta (dict): Meta information for current image.
            gt_instances_ignore (:obj:`InstanceData`, optional): Instances
                to be ignored during training. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.  Defaults to True.

        Returns:
            tuple:

                - labels (Tensor): Labels of each level.
                - label_weights (Tensor): Label weights of each level.
                - bbox_targets (Tensor): BBox targets of each level.
                - bbox_weights (Tensor): BBox weights of each level.
                - pos_inds (Tensor): positive samples indexes.
                - neg_inds (Tensor): negative samples indexes.
                - sampling_result (:obj:`SamplingResult`): Sampling results.
        """
        inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
                                           img_meta['img_shape'][:2],
                                           self.train_cfg['allowed_border'])
        if not inside_flags.any():
            raise ValueError(
                'There is no valid anchor inside the image boundary. Please '
                'check the image size and anchor sizes, or set '
                '``allowed_border`` to -1 to skip the condition.')
        # assign gt and sample anchors
        anchors = flat_anchors[inside_flags]

        pred_instances = InstanceData(priors=anchors)
        assign_result = self.assigner.assign(pred_instances, gt_instances,
                                             gt_instances_ignore)
        # No sampling is required except for RPN and
        # Guided Anchoring algorithms
        sampling_result = self.sampler.sample(assign_result, pred_instances,
                                              gt_instances)

        num_valid_anchors = anchors.shape[0]
        target_dim = gt_instances.bboxes.size(-1) if self.reg_decoded_bbox \
            else self.bbox_coder.encode_size
        bbox_targets = anchors.new_zeros(num_valid_anchors, target_dim)
        bbox_weights = anchors.new_zeros(num_valid_anchors, target_dim)

        # TODO: Considering saving memory, is it necessary to be long?
        labels = anchors.new_full((num_valid_anchors, ),
                                  self.num_classes,
                                  dtype=torch.long)
        label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)

        pos_inds = sampling_result.pos_inds
        neg_inds = sampling_result.neg_inds
        # `bbox_coder.encode` accepts tensor or box type inputs and generates
        # tensor targets. If regressing decoded boxes, the code will convert
        # box type `pos_bbox_targets` to tensor.
        if len(pos_inds) > 0:
            if not self.reg_decoded_bbox:
                pos_bbox_targets = self.bbox_coder.encode(
                    sampling_result.pos_priors, sampling_result.pos_gt_bboxes)
            else:
                pos_bbox_targets = sampling_result.pos_gt_bboxes
                pos_bbox_targets = get_box_tensor(pos_bbox_targets)
            bbox_targets[pos_inds, :] = pos_bbox_targets
            bbox_weights[pos_inds, :] = 1.0

            labels[pos_inds] = sampling_result.pos_gt_labels
            if self.train_cfg['pos_weight'] <= 0:
                label_weights[pos_inds] = 1.0
            else:
                label_weights[pos_inds] = self.train_cfg['pos_weight']
        if len(neg_inds) > 0:
            label_weights[neg_inds] = 1.0

        # map up to original set of anchors
        if unmap_outputs:
            num_total_anchors = flat_anchors.size(0)
            labels = unmap(
                labels, num_total_anchors, inside_flags,
                fill=self.num_classes)  # fill bg label
            label_weights = unmap(label_weights, num_total_anchors,
                                  inside_flags)
            bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
            bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)

        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                neg_inds, sampling_result)

    def get_targets(self,
                    anchor_list: List[List[Tensor]],
                    valid_flag_list: List[List[Tensor]],
                    batch_gt_instances: InstanceList,
                    batch_img_metas: List[dict],
                    batch_gt_instances_ignore: OptInstanceList = None,
                    unmap_outputs: bool = True,
                    return_sampling_results: bool = False) -> tuple:
        """Compute regression and classification targets for anchors in
        multiple images.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, 4).
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors. Defaults to True.
            return_sampling_results (bool): Whether to return the sampling
                results. Defaults to False.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - labels_list (list[Tensor]): Labels of each level.
                - label_weights_list (list[Tensor]): Label weights of each
                  level.
                - bbox_targets_list (list[Tensor]): BBox targets of each level.
                - bbox_weights_list (list[Tensor]): BBox weights of each level.
                - avg_factor (int): Average factor that is used to average
                  the loss. When using sampling method, avg_factor is usually
                  the sum of positive and negative priors. When using
                  `PseudoSampler`, `avg_factor` is usually equal to the number
                  of positive priors.

            additional_returns: This function enables user-defined returns from
                `self._get_targets_single`. These returns are currently refined
                to properties at each feature map (i.e. having HxW dimension).
                The results will be concatenated after the end
        """
        num_imgs = len(batch_img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs

        if batch_gt_instances_ignore is None:
            batch_gt_instances_ignore = [None] * num_imgs

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors to a single tensor
        concat_anchor_list = []
        concat_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            concat_anchor_list.append(cat_boxes(anchor_list[i]))
            concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))

        # compute targets for each image
        results = multi_apply(
            self._get_targets_single,
            concat_anchor_list,
            concat_valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore,
            unmap_outputs=unmap_outputs)
        (all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
         pos_inds_list, neg_inds_list, sampling_results_list) = results[:7]
        rest_results = list(results[7:])  # user-added return values
        # Get `avg_factor` of all images, which calculate in `SamplingResult`.
        # When using sampling method, avg_factor is usually the sum of
        # positive and negative priors. When using `PseudoSampler`,
        # `avg_factor` is usually equal to the number of positive priors.
        avg_factor = sum(
            [results.avg_factor for results in sampling_results_list])
        # update `_raw_positive_infos`, which will be used when calling
        # `get_positive_infos`.
        self._raw_positive_infos.update(sampling_results=sampling_results_list)
        # split targets to a list w.r.t. multiple levels
        labels_list = images_to_levels(all_labels, num_level_anchors)
        label_weights_list = images_to_levels(all_label_weights,
                                              num_level_anchors)
        bbox_targets_list = images_to_levels(all_bbox_targets,
                                             num_level_anchors)
        bbox_weights_list = images_to_levels(all_bbox_weights,
                                             num_level_anchors)
        res = (labels_list, label_weights_list, bbox_targets_list,
               bbox_weights_list, avg_factor)
        if return_sampling_results:
            res = res + (sampling_results_list, )
        for i, r in enumerate(rest_results):  # user-added return values
            rest_results[i] = images_to_levels(r, num_level_anchors)

        return res + tuple(rest_results)

    def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
                            anchors: Tensor, labels: Tensor,
                            label_weights: Tensor, bbox_targets: Tensor,
                            bbox_weights: Tensor, avg_factor: int) -> tuple:
        """Calculate the loss of a single scale level based on the features
        extracted by the detection head.

        Args:
            cls_score (Tensor): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W).
            bbox_pred (Tensor): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            anchors (Tensor): Box reference for each scale level with shape
                (N, num_total_anchors, 4).
            labels (Tensor): Labels of each anchors with shape
                (N, num_total_anchors).
            label_weights (Tensor): Label weights of each anchor with shape
                (N, num_total_anchors)
            bbox_targets (Tensor): BBox regression targets of each anchor
                weight shape (N, num_total_anchors, 4).
            bbox_weights (Tensor): BBox regression loss weights of each anchor
                with shape (N, num_total_anchors, 4).
            avg_factor (int): Average factor that is used to average the loss.

        Returns:
            tuple: loss components.
        """
        # classification loss
        labels = labels.reshape(-1)
        label_weights = label_weights.reshape(-1)
        cls_score = cls_score.permute(0, 2, 3,
                                      1).reshape(-1, self.cls_out_channels)
        loss_cls = self.loss_cls(
            cls_score, labels, label_weights, avg_factor=avg_factor)
        # regression loss
        target_dim = bbox_targets.size(-1)
        bbox_targets = bbox_targets.reshape(-1, target_dim)
        bbox_weights = bbox_weights.reshape(-1, target_dim)
        bbox_pred = bbox_pred.permute(0, 2, 3,
                                      1).reshape(-1,
                                                 self.bbox_coder.encode_size)
        if self.reg_decoded_bbox:
            # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
            # is applied directly on the decoded bounding boxes, it
            # decodes the already encoded coordinates to absolute format.
            anchors = anchors.reshape(-1, anchors.size(-1))
            bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
            bbox_pred = get_box_tensor(bbox_pred)
        loss_bbox = self.loss_bbox(
            bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor)
        return loss_cls, loss_bbox

    def loss_by_feat(
            self,
            cls_scores: List[Tensor],
            bbox_preds: List[Tensor],
            batch_gt_instances: InstanceList,
            batch_img_metas: List[dict],
            batch_gt_instances_ignore: OptInstanceList = None) -> dict:
        """Calculate the loss based on the features extracted by the detection
        head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                has shape (N, num_anchors * num_classes, H, W).
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W).
            batch_gt_instances (list[:obj:`InstanceData`]): Batch of
                gt_instance. It usually includes ``bboxes`` and ``labels``
                attributes.
            batch_img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
                Batch of gt_instances_ignore. It includes ``bboxes`` attribute
                data that is ignored during training and testing.
                Defaults to None.

        Returns:
            dict: A dictionary of loss components.
        """
        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.prior_generator.num_levels

        device = cls_scores[0].device

        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, batch_img_metas, device=device)
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            batch_gt_instances,
            batch_img_metas,
            batch_gt_instances_ignore=batch_gt_instances_ignore)
        (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
         avg_factor) = cls_reg_targets

        # anchor number of multi levels
        num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
        # concat all level anchors and flags to a single tensor
        concat_anchor_list = []
        for i in range(len(anchor_list)):
            concat_anchor_list.append(cat_boxes(anchor_list[i]))
        all_anchor_list = images_to_levels(concat_anchor_list,
                                           num_level_anchors)

        losses_cls, losses_bbox = multi_apply(
            self.loss_by_feat_single,
            cls_scores,
            bbox_preds,
            all_anchor_list,
            labels_list,
            label_weights_list,
            bbox_targets_list,
            bbox_weights_list,
            avg_factor=avg_factor)
        return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)