Spaces:
Runtime error
Runtime error
File size: 24,816 Bytes
f549064 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 |
# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from mmengine.structures import InstanceData
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.structures.bbox import BaseBoxes, cat_boxes, get_box_tensor
from mmdet.utils import (ConfigType, InstanceList, OptConfigType,
OptInstanceList, OptMultiConfig)
from ..task_modules.prior_generators import (AnchorGenerator,
anchor_inside_flags)
from ..task_modules.samplers import PseudoSampler
from ..utils import images_to_levels, multi_apply, unmap
from .base_dense_head import BaseDenseHead
@MODELS.register_module()
class AnchorHead(BaseDenseHead):
"""Anchor-based head (RPN, RetinaNet, SSD, etc.).
Args:
num_classes (int): Number of categories excluding the background
category.
in_channels (int): Number of channels in the input feature map.
feat_channels (int): Number of hidden channels. Used in child classes.
anchor_generator (dict): Config dict for anchor generator
bbox_coder (dict): Config of bounding box coder.
reg_decoded_bbox (bool): If true, the regression loss would be
applied directly on decoded bounding boxes, converting both
the predicted boxes and regression targets to absolute
coordinates format. Default False. It should be `True` when
using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
loss_cls (dict): Config of classification loss.
loss_bbox (dict): Config of localization loss.
train_cfg (dict): Training config of anchor head.
test_cfg (dict): Testing config of anchor head.
init_cfg (dict or list[dict], optional): Initialization config dict.
""" # noqa: W605
def __init__(
self,
num_classes: int,
in_channels: int,
feat_channels: int = 256,
anchor_generator: ConfigType = dict(
type='AnchorGenerator',
scales=[8, 16, 32],
ratios=[0.5, 1.0, 2.0],
strides=[4, 8, 16, 32, 64]),
bbox_coder: ConfigType = dict(
type='DeltaXYWHBBoxCoder',
clip_border=True,
target_means=(.0, .0, .0, .0),
target_stds=(1.0, 1.0, 1.0, 1.0)),
reg_decoded_bbox: bool = False,
loss_cls: ConfigType = dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox: ConfigType = dict(
type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = dict(
type='Normal', layer='Conv2d', std=0.01)
) -> None:
super().__init__(init_cfg=init_cfg)
self.in_channels = in_channels
self.num_classes = num_classes
self.feat_channels = feat_channels
self.use_sigmoid_cls = loss_cls.get('use_sigmoid', False)
if self.use_sigmoid_cls:
self.cls_out_channels = num_classes
else:
self.cls_out_channels = num_classes + 1
if self.cls_out_channels <= 0:
raise ValueError(f'num_classes={num_classes} is too small')
self.reg_decoded_bbox = reg_decoded_bbox
self.bbox_coder = TASK_UTILS.build(bbox_coder)
self.loss_cls = MODELS.build(loss_cls)
self.loss_bbox = MODELS.build(loss_bbox)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
if self.train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
if train_cfg.get('sampler', None) is not None:
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
else:
self.sampler = PseudoSampler(context=self)
self.fp16_enabled = False
self.prior_generator = TASK_UTILS.build(anchor_generator)
# Usually the numbers of anchors for each level are the same
# except SSD detectors. So it is an int in the most dense
# heads but a list of int in SSDHead
self.num_base_priors = self.prior_generator.num_base_priors[0]
self._init_layers()
@property
def num_anchors(self) -> int:
warnings.warn('DeprecationWarning: `num_anchors` is deprecated, '
'for consistency or also use '
'`num_base_priors` instead')
return self.prior_generator.num_base_priors[0]
@property
def anchor_generator(self) -> AnchorGenerator:
warnings.warn('DeprecationWarning: anchor_generator is deprecated, '
'please use "prior_generator" instead')
return self.prior_generator
def _init_layers(self) -> None:
"""Initialize layers of the head."""
self.conv_cls = nn.Conv2d(self.in_channels,
self.num_base_priors * self.cls_out_channels,
1)
reg_dim = self.bbox_coder.encode_size
self.conv_reg = nn.Conv2d(self.in_channels,
self.num_base_priors * reg_dim, 1)
def forward_single(self, x: Tensor) -> Tuple[Tensor, Tensor]:
"""Forward feature of a single scale level.
Args:
x (Tensor): Features of a single scale level.
Returns:
tuple:
cls_score (Tensor): Cls scores for a single scale level \
the channels number is num_base_priors * num_classes.
bbox_pred (Tensor): Box energies / deltas for a single scale \
level, the channels number is num_base_priors * 4.
"""
cls_score = self.conv_cls(x)
bbox_pred = self.conv_reg(x)
return cls_score, bbox_pred
def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor]]:
"""Forward features from the upstream network.
Args:
x (tuple[Tensor]): Features from the upstream network, each is
a 4D-tensor.
Returns:
tuple: A tuple of classification scores and bbox prediction.
- cls_scores (list[Tensor]): Classification scores for all \
scale levels, each is a 4D-tensor, the channels number \
is num_base_priors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all \
scale levels, each is a 4D-tensor, the channels number \
is num_base_priors * 4.
"""
return multi_apply(self.forward_single, x)
def get_anchors(self,
featmap_sizes: List[tuple],
batch_img_metas: List[dict],
device: Union[torch.device, str] = 'cuda') \
-> Tuple[List[List[Tensor]], List[List[Tensor]]]:
"""Get anchors according to feature map sizes.
Args:
featmap_sizes (list[tuple]): Multi-level feature map sizes.
batch_img_metas (list[dict]): Image meta info.
device (torch.device | str): Device for returned tensors.
Defaults to cuda.
Returns:
tuple:
- anchor_list (list[list[Tensor]]): Anchors of each image.
- valid_flag_list (list[list[Tensor]]): Valid flags of each
image.
"""
num_imgs = len(batch_img_metas)
# since feature map sizes of all images are the same, we only compute
# anchors for one time
multi_level_anchors = self.prior_generator.grid_priors(
featmap_sizes, device=device)
anchor_list = [multi_level_anchors for _ in range(num_imgs)]
# for each image, we compute valid flags of multi level anchors
valid_flag_list = []
for img_id, img_meta in enumerate(batch_img_metas):
multi_level_flags = self.prior_generator.valid_flags(
featmap_sizes, img_meta['pad_shape'], device)
valid_flag_list.append(multi_level_flags)
return anchor_list, valid_flag_list
def _get_targets_single(self,
flat_anchors: Union[Tensor, BaseBoxes],
valid_flags: Tensor,
gt_instances: InstanceData,
img_meta: dict,
gt_instances_ignore: Optional[InstanceData] = None,
unmap_outputs: bool = True) -> tuple:
"""Compute regression and classification targets for anchors in a
single image.
Args:
flat_anchors (Tensor or :obj:`BaseBoxes`): Multi-level anchors
of the image, which are concatenated into a single tensor
or box type of shape (num_anchors, 4)
valid_flags (Tensor): Multi level valid flags of the image,
which are concatenated into a single tensor of
shape (num_anchors, ).
gt_instances (:obj:`InstanceData`): Ground truth of instance
annotations. It should includes ``bboxes`` and ``labels``
attributes.
img_meta (dict): Meta information for current image.
gt_instances_ignore (:obj:`InstanceData`, optional): Instances
to be ignored during training. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
Returns:
tuple:
- labels (Tensor): Labels of each level.
- label_weights (Tensor): Label weights of each level.
- bbox_targets (Tensor): BBox targets of each level.
- bbox_weights (Tensor): BBox weights of each level.
- pos_inds (Tensor): positive samples indexes.
- neg_inds (Tensor): negative samples indexes.
- sampling_result (:obj:`SamplingResult`): Sampling results.
"""
inside_flags = anchor_inside_flags(flat_anchors, valid_flags,
img_meta['img_shape'][:2],
self.train_cfg['allowed_border'])
if not inside_flags.any():
raise ValueError(
'There is no valid anchor inside the image boundary. Please '
'check the image size and anchor sizes, or set '
'``allowed_border`` to -1 to skip the condition.')
# assign gt and sample anchors
anchors = flat_anchors[inside_flags]
pred_instances = InstanceData(priors=anchors)
assign_result = self.assigner.assign(pred_instances, gt_instances,
gt_instances_ignore)
# No sampling is required except for RPN and
# Guided Anchoring algorithms
sampling_result = self.sampler.sample(assign_result, pred_instances,
gt_instances)
num_valid_anchors = anchors.shape[0]
target_dim = gt_instances.bboxes.size(-1) if self.reg_decoded_bbox \
else self.bbox_coder.encode_size
bbox_targets = anchors.new_zeros(num_valid_anchors, target_dim)
bbox_weights = anchors.new_zeros(num_valid_anchors, target_dim)
# TODO: Considering saving memory, is it necessary to be long?
labels = anchors.new_full((num_valid_anchors, ),
self.num_classes,
dtype=torch.long)
label_weights = anchors.new_zeros(num_valid_anchors, dtype=torch.float)
pos_inds = sampling_result.pos_inds
neg_inds = sampling_result.neg_inds
# `bbox_coder.encode` accepts tensor or box type inputs and generates
# tensor targets. If regressing decoded boxes, the code will convert
# box type `pos_bbox_targets` to tensor.
if len(pos_inds) > 0:
if not self.reg_decoded_bbox:
pos_bbox_targets = self.bbox_coder.encode(
sampling_result.pos_priors, sampling_result.pos_gt_bboxes)
else:
pos_bbox_targets = sampling_result.pos_gt_bboxes
pos_bbox_targets = get_box_tensor(pos_bbox_targets)
bbox_targets[pos_inds, :] = pos_bbox_targets
bbox_weights[pos_inds, :] = 1.0
labels[pos_inds] = sampling_result.pos_gt_labels
if self.train_cfg['pos_weight'] <= 0:
label_weights[pos_inds] = 1.0
else:
label_weights[pos_inds] = self.train_cfg['pos_weight']
if len(neg_inds) > 0:
label_weights[neg_inds] = 1.0
# map up to original set of anchors
if unmap_outputs:
num_total_anchors = flat_anchors.size(0)
labels = unmap(
labels, num_total_anchors, inside_flags,
fill=self.num_classes) # fill bg label
label_weights = unmap(label_weights, num_total_anchors,
inside_flags)
bbox_targets = unmap(bbox_targets, num_total_anchors, inside_flags)
bbox_weights = unmap(bbox_weights, num_total_anchors, inside_flags)
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
neg_inds, sampling_result)
def get_targets(self,
anchor_list: List[List[Tensor]],
valid_flag_list: List[List[Tensor]],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None,
unmap_outputs: bool = True,
return_sampling_results: bool = False) -> tuple:
"""Compute regression and classification targets for anchors in
multiple images.
Args:
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors. Defaults to True.
return_sampling_results (bool): Whether to return the sampling
results. Defaults to False.
Returns:
tuple: Usually returns a tuple containing learning targets.
- labels_list (list[Tensor]): Labels of each level.
- label_weights_list (list[Tensor]): Label weights of each
level.
- bbox_targets_list (list[Tensor]): BBox targets of each level.
- bbox_weights_list (list[Tensor]): BBox weights of each level.
- avg_factor (int): Average factor that is used to average
the loss. When using sampling method, avg_factor is usually
the sum of positive and negative priors. When using
`PseudoSampler`, `avg_factor` is usually equal to the number
of positive priors.
additional_returns: This function enables user-defined returns from
`self._get_targets_single`. These returns are currently refined
to properties at each feature map (i.e. having HxW dimension).
The results will be concatenated after the end
"""
num_imgs = len(batch_img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
if batch_gt_instances_ignore is None:
batch_gt_instances_ignore = [None] * num_imgs
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# concat all level anchors to a single tensor
concat_anchor_list = []
concat_valid_flag_list = []
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
concat_anchor_list.append(cat_boxes(anchor_list[i]))
concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))
# compute targets for each image
results = multi_apply(
self._get_targets_single,
concat_anchor_list,
concat_valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore,
unmap_outputs=unmap_outputs)
(all_labels, all_label_weights, all_bbox_targets, all_bbox_weights,
pos_inds_list, neg_inds_list, sampling_results_list) = results[:7]
rest_results = list(results[7:]) # user-added return values
# Get `avg_factor` of all images, which calculate in `SamplingResult`.
# When using sampling method, avg_factor is usually the sum of
# positive and negative priors. When using `PseudoSampler`,
# `avg_factor` is usually equal to the number of positive priors.
avg_factor = sum(
[results.avg_factor for results in sampling_results_list])
# update `_raw_positive_infos`, which will be used when calling
# `get_positive_infos`.
self._raw_positive_infos.update(sampling_results=sampling_results_list)
# split targets to a list w.r.t. multiple levels
labels_list = images_to_levels(all_labels, num_level_anchors)
label_weights_list = images_to_levels(all_label_weights,
num_level_anchors)
bbox_targets_list = images_to_levels(all_bbox_targets,
num_level_anchors)
bbox_weights_list = images_to_levels(all_bbox_weights,
num_level_anchors)
res = (labels_list, label_weights_list, bbox_targets_list,
bbox_weights_list, avg_factor)
if return_sampling_results:
res = res + (sampling_results_list, )
for i, r in enumerate(rest_results): # user-added return values
rest_results[i] = images_to_levels(r, num_level_anchors)
return res + tuple(rest_results)
def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
anchors: Tensor, labels: Tensor,
label_weights: Tensor, bbox_targets: Tensor,
bbox_weights: Tensor, avg_factor: int) -> tuple:
"""Calculate the loss of a single scale level based on the features
extracted by the detection head.
Args:
cls_score (Tensor): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
anchors (Tensor): Box reference for each scale level with shape
(N, num_total_anchors, 4).
labels (Tensor): Labels of each anchors with shape
(N, num_total_anchors).
label_weights (Tensor): Label weights of each anchor with shape
(N, num_total_anchors)
bbox_targets (Tensor): BBox regression targets of each anchor
weight shape (N, num_total_anchors, 4).
bbox_weights (Tensor): BBox regression loss weights of each anchor
with shape (N, num_total_anchors, 4).
avg_factor (int): Average factor that is used to average the loss.
Returns:
tuple: loss components.
"""
# classification loss
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
cls_score = cls_score.permute(0, 2, 3,
1).reshape(-1, self.cls_out_channels)
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=avg_factor)
# regression loss
target_dim = bbox_targets.size(-1)
bbox_targets = bbox_targets.reshape(-1, target_dim)
bbox_weights = bbox_weights.reshape(-1, target_dim)
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(-1,
self.bbox_coder.encode_size)
if self.reg_decoded_bbox:
# When the regression loss (e.g. `IouLoss`, `GIouLoss`)
# is applied directly on the decoded bounding boxes, it
# decodes the already encoded coordinates to absolute format.
anchors = anchors.reshape(-1, anchors.size(-1))
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
bbox_pred = get_box_tensor(bbox_pred)
loss_bbox = self.loss_bbox(
bbox_pred, bbox_targets, bbox_weights, avg_factor=avg_factor)
return loss_cls, loss_bbox
def loss_by_feat(
self,
cls_scores: List[Tensor],
bbox_preds: List[Tensor],
batch_gt_instances: InstanceList,
batch_img_metas: List[dict],
batch_gt_instances_ignore: OptInstanceList = None) -> dict:
"""Calculate the loss based on the features extracted by the detection
head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[:obj:`InstanceData`]): Batch of
gt_instance. It usually includes ``bboxes`` and ``labels``
attributes.
batch_img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
batch_gt_instances_ignore (list[:obj:`InstanceData`], optional):
Batch of gt_instances_ignore. It includes ``bboxes`` attribute
data that is ignored during training and testing.
Defaults to None.
Returns:
dict: A dictionary of loss components.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.prior_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, batch_img_metas, device=device)
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
batch_gt_instances,
batch_img_metas,
batch_gt_instances_ignore=batch_gt_instances_ignore)
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
avg_factor) = cls_reg_targets
# anchor number of multi levels
num_level_anchors = [anchors.size(0) for anchors in anchor_list[0]]
# concat all level anchors and flags to a single tensor
concat_anchor_list = []
for i in range(len(anchor_list)):
concat_anchor_list.append(cat_boxes(anchor_list[i]))
all_anchor_list = images_to_levels(concat_anchor_list,
num_level_anchors)
losses_cls, losses_bbox = multi_apply(
self.loss_by_feat_single,
cls_scores,
bbox_preds,
all_anchor_list,
labels_list,
label_weights_list,
bbox_targets_list,
bbox_weights_list,
avg_factor=avg_factor)
return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
|