# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from collections import OrderedDict import mmengine import torch from mmengine.runner import CheckpointLoader def convert_mit(ckpt): new_ckpt = OrderedDict() # Process the concat between q linear weights and kv linear weights for k, v in ckpt.items(): if k.startswith('head'): continue # patch embedding conversion elif k.startswith('patch_embed'): stage_i = int(k.split('.')[0].replace('patch_embed', '')) new_k = k.replace(f'patch_embed{stage_i}', f'layers.{stage_i-1}.0') new_v = v if 'proj.' in new_k: new_k = new_k.replace('proj.', 'projection.') # transformer encoder layer conversion elif k.startswith('block'): stage_i = int(k.split('.')[0].replace('block', '')) new_k = k.replace(f'block{stage_i}', f'layers.{stage_i-1}.1') new_v = v if 'attn.q.' in new_k: sub_item_k = k.replace('q.', 'kv.') new_k = new_k.replace('q.', 'attn.in_proj_') new_v = torch.cat([v, ckpt[sub_item_k]], dim=0) elif 'attn.kv.' in new_k: continue elif 'attn.proj.' in new_k: new_k = new_k.replace('proj.', 'attn.out_proj.') elif 'attn.sr.' in new_k: new_k = new_k.replace('sr.', 'sr.') elif 'mlp.' in new_k: string = f'{new_k}-' new_k = new_k.replace('mlp.', 'ffn.layers.') if 'fc1.weight' in new_k or 'fc2.weight' in new_k: new_v = v.reshape((*v.shape, 1, 1)) new_k = new_k.replace('fc1.', '0.') new_k = new_k.replace('dwconv.dwconv.', '1.') new_k = new_k.replace('fc2.', '4.') string += f'{new_k} {v.shape}-{new_v.shape}' # norm layer conversion elif k.startswith('norm'): stage_i = int(k.split('.')[0].replace('norm', '')) new_k = k.replace(f'norm{stage_i}', f'layers.{stage_i-1}.2') new_v = v else: new_k = k new_v = v new_ckpt[new_k] = new_v return new_ckpt def main(): parser = argparse.ArgumentParser( description='Convert keys in official pretrained segformer to ' 'MMSegmentation style.') parser.add_argument('src', help='src model path or url') # The dst path must be a full path of the new checkpoint. parser.add_argument('dst', help='save path') args = parser.parse_args() checkpoint = CheckpointLoader.load_checkpoint(args.src, map_location='cpu') if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict'] elif 'model' in checkpoint: state_dict = checkpoint['model'] else: state_dict = checkpoint weight = convert_mit(state_dict) mmengine.mkdir_or_exist(osp.dirname(args.dst)) torch.save(weight, args.dst) if __name__ == '__main__': main()