# Copyright (c) Open-CD. All rights reserved. import os.path as osp import warnings from typing import Optional, Sequence import mmcv import mmengine.fileio as fileio import numpy as np from mmengine.runner import Runner from mmseg.engine import SegVisualizationHook from mmseg.structures import SegDataSample from opencd.registry import HOOKS from opencd.visualization import CDLocalVisualizer @HOOKS.register_module() class CDVisualizationHook(SegVisualizationHook): """Change Detection Visualization Hook. Used to visualize validation and testing process prediction results. Args: img_shape (tuple): if img_shape is given and `draw_on_from_to_img` is False, the original images will not be read. draw_on_from_to_img (bool): whether to draw semantic prediction results on the original images. If it is False, it means that drawing on the black board. Defaults to False. """ def __init__(self, img_shape: tuple = None, draw_on_from_to_img: bool = False, draw: bool = False, interval: int = 50, show: bool = False, wait_time: float = 0., backend_args: Optional[dict] = None): self.img_shape = img_shape self.draw_on_from_to_img = draw_on_from_to_img if self.draw_on_from_to_img: warnings.warn('`draw_on_from_to_img` works only in ' 'semantic change detection.') self._visualizer: CDLocalVisualizer = \ CDLocalVisualizer.get_current_instance() self.interval = interval self.show = show if self.show: # No need to think about vis backends. self._visualizer._vis_backends = {} warnings.warn('The show is True, it means that only ' 'the prediction results are visualized ' 'without storing data, so vis_backends ' 'needs to be excluded.') self.wait_time = wait_time self.backend_args = backend_args.copy() if backend_args else None self.draw = draw if not self.draw: warnings.warn('The draw is False, it means that the ' 'hook for visualization will not take ' 'effect. The results will NOT be ' 'visualized or stored.') def _after_iter(self, runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[SegDataSample], mode: str = 'val') -> None: """Run after every ``self.interval`` validation iterations. Args: runner (:obj:`Runner`): The runner of the validation process. batch_idx (int): The index of the current batch in the val loop. data_batch (dict): Data from dataloader. outputs (Sequence[:obj:`SegDataSample`]): Outputs from model. mode (str): mode (str): Current mode of runner. Defaults to 'val'. """ if self.draw is False or mode == 'train': return if self.every_n_inner_iters(batch_idx, self.interval): for output in outputs: img_path = output.img_path[0] img_from_to = [] window_name = osp.basename(img_path).split('.')[0] if self.img_shape is not None: assert len(self.img_shape) == 3, \ '`img_shape` should be (H, W, C)' else: img_bytes = fileio.get( img_path, backend_args=self.backend_args) img = mmcv.imfrombytes(img_bytes, channel_order='rgb') self.img_shape = img.shape if self.draw_on_from_to_img: # for semantic change detection for _img_path in output.img_path: _img_bytes = fileio.get( _img_path, backend_args=self.backend_args) _img = mmcv.imfrombytes(_img_bytes, channel_order='rgb') img_from_to.append(_img) img = np.zeros(self.img_shape) self._visualizer.add_datasample( window_name, img, img_from_to, data_sample=output, show=self.show, wait_time=self.wait_time, step=runner.iter, draw_gt=False)