# Copyright (c) OpenMMLab. All rights reserved. from typing import Dict, List import torch import torch.nn as nn import torch.nn.functional as F from mmcv.cnn import ConvModule from mmengine.model import BaseModule, ModuleList, Sequential from torch import Tensor class DAPPM(BaseModule): """DAPPM module in `DDRNet `_. Args: in_channels (int): Input channels. branch_channels (int): Branch channels. out_channels (int): Output channels. num_scales (int): Number of scales. kernel_sizes (list[int]): Kernel sizes of each scale. strides (list[int]): Strides of each scale. paddings (list[int]): Paddings of each scale. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN'). act_cfg (dict): Config dict for activation layer in ConvModule. Default: dict(type='ReLU', inplace=True). conv_cfg (dict): Config dict for convolution layer in ConvModule. Default: dict(order=('norm', 'act', 'conv'), bias=False). upsample_mode (str): Upsample mode. Default: 'bilinear'. """ def __init__(self, in_channels: int, branch_channels: int, out_channels: int, num_scales: int, kernel_sizes: List[int] = [5, 9, 17], strides: List[int] = [2, 4, 8], paddings: List[int] = [2, 4, 8], norm_cfg: Dict = dict(type='BN', momentum=0.1), act_cfg: Dict = dict(type='ReLU', inplace=True), conv_cfg: Dict = dict( order=('norm', 'act', 'conv'), bias=False), upsample_mode: str = 'bilinear'): super().__init__() self.num_scales = num_scales self.unsample_mode = upsample_mode self.in_channels = in_channels self.branch_channels = branch_channels self.out_channels = out_channels self.norm_cfg = norm_cfg self.act_cfg = act_cfg self.conv_cfg = conv_cfg self.scales = ModuleList([ ConvModule( in_channels, branch_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg) ]) for i in range(1, num_scales - 1): self.scales.append( Sequential(*[ nn.AvgPool2d( kernel_size=kernel_sizes[i - 1], stride=strides[i - 1], padding=paddings[i - 1]), ConvModule( in_channels, branch_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg) ])) self.scales.append( Sequential(*[ nn.AdaptiveAvgPool2d((1, 1)), ConvModule( in_channels, branch_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg) ])) self.processes = ModuleList() for i in range(num_scales - 1): self.processes.append( ConvModule( branch_channels, branch_channels, kernel_size=3, padding=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg)) self.compression = ConvModule( branch_channels * num_scales, out_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg) self.shortcut = ConvModule( in_channels, out_channels, kernel_size=1, norm_cfg=norm_cfg, act_cfg=act_cfg, **conv_cfg) def forward(self, inputs: Tensor): feats = [] feats.append(self.scales[0](inputs)) for i in range(1, self.num_scales): feat_up = F.interpolate( self.scales[i](inputs), size=inputs.shape[2:], mode=self.unsample_mode) feats.append(self.processes[i - 1](feat_up + feats[i - 1])) return self.compression(torch.cat(feats, dim=1)) + self.shortcut(inputs) class PAPPM(DAPPM): """PAPPM module in `PIDNet `_. Args: in_channels (int): Input channels. branch_channels (int): Branch channels. out_channels (int): Output channels. num_scales (int): Number of scales. kernel_sizes (list[int]): Kernel sizes of each scale. strides (list[int]): Strides of each scale. paddings (list[int]): Paddings of each scale. norm_cfg (dict): Config dict for normalization layer. Default: dict(type='BN', momentum=0.1). act_cfg (dict): Config dict for activation layer in ConvModule. Default: dict(type='ReLU', inplace=True). conv_cfg (dict): Config dict for convolution layer in ConvModule. Default: dict(order=('norm', 'act', 'conv'), bias=False). upsample_mode (str): Upsample mode. Default: 'bilinear'. """ def __init__(self, in_channels: int, branch_channels: int, out_channels: int, num_scales: int, kernel_sizes: List[int] = [5, 9, 17], strides: List[int] = [2, 4, 8], paddings: List[int] = [2, 4, 8], norm_cfg: Dict = dict(type='BN', momentum=0.1), act_cfg: Dict = dict(type='ReLU', inplace=True), conv_cfg: Dict = dict( order=('norm', 'act', 'conv'), bias=False), upsample_mode: str = 'bilinear'): super().__init__(in_channels, branch_channels, out_channels, num_scales, kernel_sizes, strides, paddings, norm_cfg, act_cfg, conv_cfg, upsample_mode) self.processes = ConvModule( self.branch_channels * (self.num_scales - 1), self.branch_channels * (self.num_scales - 1), kernel_size=3, padding=1, groups=self.num_scales - 1, norm_cfg=self.norm_cfg, act_cfg=self.act_cfg, **self.conv_cfg) def forward(self, inputs: Tensor): x_ = self.scales[0](inputs) feats = [] for i in range(1, self.num_scales): feat_up = F.interpolate( self.scales[i](inputs), size=inputs.shape[2:], mode=self.unsample_mode, align_corners=False) feats.append(feat_up + x_) scale_out = self.processes(torch.cat(feats, dim=1)) return self.compression(torch.cat([x_, scale_out], dim=1)) + self.shortcut(inputs)