# Copyright (c) OpenMMLab. All rights reserved. from typing import Optional, Union from torch import Tensor from mmdet.models.mot import BaseMOTModel from mmdet.registry import MODELS from mmdet.structures import TrackDataSample, TrackSampleList from mmdet.utils import OptConfigType, OptMultiConfig @MODELS.register_module() class Mask2FormerVideo(BaseMOTModel): r"""Implementation of `Masked-attention Mask Transformer for Universal Image Segmentation `_. Args: backbone (dict): Configuration of backbone. Defaults to None. track_head (dict): Configuration of track head. Defaults to None. data_preprocessor (dict or ConfigDict, optional): The pre-process config of :class:`TrackDataPreprocessor`. it usually includes, ``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. Defaults to None. init_cfg (dict or list[dict]): Configuration of initialization. Defaults to None. """ def __init__(self, backbone: Optional[dict] = None, track_head: Optional[dict] = None, data_preprocessor: OptConfigType = None, init_cfg: OptMultiConfig = None): super(BaseMOTModel, self).__init__( data_preprocessor=data_preprocessor, init_cfg=init_cfg) if backbone is not None: self.backbone = MODELS.build(backbone) if track_head is not None: self.track_head = MODELS.build(track_head) self.num_classes = self.track_head.num_classes def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs): """Overload in order to load mmdet pretrained ckpt.""" for key in list(state_dict): if key.startswith('panoptic_head'): state_dict[key.replace('panoptic', 'track')] = state_dict.pop(key) super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) def loss(self, inputs: Tensor, data_samples: TrackSampleList, **kwargs) -> Union[dict, tuple]: """ Args: inputs (Tensor): Input images of shape (N, T, C, H, W). These should usually be mean centered and std scaled. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `gt_instance`. Returns: dict[str, Tensor]: a dictionary of loss components """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' # shape (N * T, C, H, W) img = inputs.flatten(0, 1) x = self.backbone(img) losses = self.track_head.loss(x, data_samples) return losses def predict(self, inputs: Tensor, data_samples: TrackSampleList, rescale: bool = True) -> TrackSampleList: """Predict results from a batch of inputs and data samples with postprocessing. Args: inputs (Tensor): of shape (N, T, C, H, W) encoding input images. The N denotes batch size. The T denotes the number of frames in a video. data_samples (list[:obj:`TrackDataSample`]): The batch data samples. It usually includes information such as `video_data_samples`. rescale (bool, Optional): If False, then returned bboxes and masks will fit the scale of img, otherwise, returned bboxes and masks will fit the scale of original image shape. Defaults to True. Returns: TrackSampleList: Tracking results of the inputs. """ assert inputs.dim() == 5, 'The img must be 5D Tensor (N, T, C, H, W).' assert len(data_samples) == 1, \ 'Mask2former only support 1 batch size per gpu for now.' # [T, C, H, W] img = inputs[0] track_data_sample = data_samples[0] feats = self.backbone(img) pred_track_ins_list = self.track_head.predict(feats, track_data_sample, rescale) det_data_samples_list = [] for idx, pred_track_ins in enumerate(pred_track_ins_list): img_data_sample = track_data_sample[idx] img_data_sample.pred_track_instances = pred_track_ins det_data_samples_list.append(img_data_sample) results = TrackDataSample() results.video_data_samples = det_data_samples_list return [results]