# Copyright (c) OpenMMLab. All rights reserved. from numbers import Number from typing import Sequence, Union import mmengine import numpy as np import torch from mmengine.structures import BaseDataElement, LabelData def format_label(value: Union[torch.Tensor, np.ndarray, Sequence, int], num_classes: int = None) -> LabelData: """Convert label of various python types to :obj:`mmengine.LabelData`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int`. Args: value (torch.Tensor | numpy.ndarray | Sequence | int): Label value. num_classes (int, optional): The number of classes. If not None, set it to the metainfo. Defaults to None. Returns: :obj:`mmengine.LabelData`: The foramtted label data. """ # Handle single number if isinstance(value, (torch.Tensor, np.ndarray)) and value.ndim == 0: value = int(value.item()) if isinstance(value, np.ndarray): value = torch.from_numpy(value) elif isinstance(value, Sequence) and not mmengine.utils.is_str(value): value = torch.tensor(value) elif isinstance(value, int): value = torch.LongTensor([value]) elif not isinstance(value, torch.Tensor): raise TypeError(f'Type {type(value)} is not an available label type.') metainfo = {} if num_classes is not None: metainfo['num_classes'] = num_classes if value.max() >= num_classes: raise ValueError(f'The label data ({value}) should not ' f'exceed num_classes ({num_classes}).') label = LabelData(label=value, metainfo=metainfo) return label class ReIDDataSample(BaseDataElement): """A data structure interface of ReID task. It's used as interfaces between different components. Meta field: img_shape (Tuple): The shape of the corresponding input image. Used for visualization. ori_shape (Tuple): The original shape of the corresponding image. Used for visualization. num_classes (int): The number of all categories. Used for label format conversion. Data field: gt_label (LabelData): The ground truth label. pred_label (LabelData): The predicted label. scores (torch.Tensor): The outputs of model. """ @property def gt_label(self): return self._gt_label @gt_label.setter def gt_label(self, value: LabelData): self.set_field(value, '_gt_label', dtype=LabelData) @gt_label.deleter def gt_label(self): del self._gt_label def set_gt_label( self, value: Union[np.ndarray, torch.Tensor, Sequence[Number], Number] ) -> 'ReIDDataSample': """Set label of ``gt_label``.""" label = format_label(value, self.get('num_classes')) if 'gt_label' in self: # setting for the second time self.gt_label.label = label.label else: # setting for the first time self.gt_label = label return self def set_gt_score(self, value: torch.Tensor) -> 'ReIDDataSample': """Set score of ``gt_label``.""" assert isinstance(value, torch.Tensor), \ f'The value should be a torch.Tensor but got {type(value)}.' assert value.ndim == 1, \ f'The dims of value should be 1, but got {value.ndim}.' if 'num_classes' in self: assert value.size(0) == self.num_classes, \ f"The length of value ({value.size(0)}) doesn't "\ f'match the num_classes ({self.num_classes}).' metainfo = {'num_classes': self.num_classes} else: metainfo = {'num_classes': value.size(0)} if 'gt_label' in self: # setting for the second time self.gt_label.score = value else: # setting for the first time self.gt_label = LabelData(score=value, metainfo=metainfo) return self @property def pred_feature(self): return self._pred_feature @pred_feature.setter def pred_feature(self, value: torch.Tensor): self.set_field(value, '_pred_feature', dtype=torch.Tensor) @pred_feature.deleter def pred_feature(self): del self._pred_feature